Answer:
For part (a): pHsol=2.22
Explanation:
I will show you how to solve part (a), so that you can use this example to solve part (b) on your own.
So, you're dealing with formic acid, HCOOH, a weak acid that does not dissociate completely in aqueous solution. This means that an equilibrium will be established between the unionized and ionized forms of the acid.
You can use an ICE table and the initial concentration ofthe acid to determine the concentrations of the conjugate base and of the hydronium ions tha are produced when the acid ionizes
HCOOH(aq]+H2O(l]⇌ HCOO−(aq] + H3O+(aq]
I 0.20 0 0
C (−x) (+x) (+x)
E (0.20−x) x x
You need to use the acid's pKa to determine its acid dissociation constant, Ka, which is equal to
Answer:
7.5 L
Explanation:
Using Charles' law, which is V1/T1=V2/T2, we can plug in these numbers to find the answer. The law states that volume is directly proportional to temperature. 3.0L/100K = x L / 250 K. Solve for x to get 7.5 L. Hope this helps.
Right answer is B . Trust me .
The answer is (3) CH3COOH. CH3COOH is a acid. It can ionized in water. So the solution can conduct an electric current. And the other three can not be ionized in water.
Most of the carbon is put away in sedimentary carbonates and kerogens, with the rest being spread between the sea, the air, biomass, for example, plants and creatures, and petroleum products.
<u>Explanation</u>:
- The carbon cycle is the procedure where carbon goes from the surrounding into living beings and to the Earth and then again goes into the air. Plants take carbon dioxide from the air and use it for food preparation. Creatures at that point eat the nourishment and carbon is put away in their bodies or discharged as CO2 through the breath.
- Most of the carbon is put away in sedimentary carbonates and kerogens, with the rest being spread between the sea, the air, biomass, for example, plants and creatures, and petroleum products. This is known as carbon storage.
- For instance, carbon, a fundamental component in natural particles, is preserved as it is moved from inorganic carbon in a biological system to natural atoms in living life forms of the biological system and back as inorganic carbon to the earth.