The heat coming from the sun warms the land more quickly than the sea. As a result of these, the air near the land warm up and rises and the cooler air from the sea moves in to replace the risen air. The correct answer is option A
There will be heat transfer from a region of higher temperature to the region of lower temperature. But in the case of land and sea breeze, the transfer of heat are the result of convectional current in nature. Because the land is a better absorber of heat and also has a lower specific heat capacity compare to sea, during the day, the heat coming from the sun warms the land more quickly than the sea. As a result of these, the air near the land warm up and rises.
The cooler air from the sea moves in to replace the risen air.
Why do ocean winds or sea breezes blow toward shore during the day ? It is because air over the beach heats up, rises and is replaced by ocean air.
Therefore, option A is correct
Learn more here : brainly.com/question/1114842
The equilibrium temperature is T13=3.12 ◦C
<u>Explanation:</u>
<u>Given </u>
The temperature of liquids: T1=6◦C, T2=23◦C, T3=38◦C
The temperature of 1+2 liquids mix: T12= 13◦C.
The temperature of 2+3 liquids mix: T23=26.8 ◦C.
The temperature of 1+3 liquids mix: T13= ??
<u>1.When the first two liquids are mixed:</u>
- mC1(T1-T12)+mC2(T2-T12)=0
- C1(6-13)=C2(23-13)=0
- 7C1=10C2
- C1=1.42C2
<u>2.When the second and third liquids are mixed</u><u>:</u>
- mC2(T2-T23)+mC3(T3-T23)=0
- C2(23-26.8)=C3(38-26.8)=0
- 3.8C2=12.8C3
- C2=3.36C3
<u>3.When the first and third liquids are mixed:</u>
- mC1(T1-T13)+mC3(T3-T13)=0
- C1(6-T13)+C3(38-T13)=0
- C1=1.42C2 C2=3.36C3
- C1=1.42C2(3.36C3)
- C1=4.77C3
- C1(6-T13)+C3(38-T13)=0
- 4.77C3(6-T13)+C3(38-T13)=0
- By solving the equation we get,
- T13=3.12 ◦C
- The equilibrium temperature is T13=3.12 ◦C
<u></u>
We use the kinematic equations,
(A)
(B)
Here, u is initial velocity, v is final velocity, a is acceleration and t is time.
Given,
,
and
.
Substituting these values in equation (B), we get
.
Therefore from equation (A),

Thus, the magnitude of the boat's final velocity is 10.84 m/s and the time taken by boat to travel the distance 280 m is 51.63 s
With what you do need help?????
Answer:
y = 1.19 m and λ = 8.6036 10⁻⁷ m
Explanation:
This is a slit interference problem, the expression for destructive interference is
d sin θ = m λ
indicate that for the angle of θ = 35º it is in the third order m = 3 and the separation of the slits is d = 4.50 10⁻⁶ m
λ = d sin θ / m
let's calculate
λ = 4.50 10⁻⁶ sin 35 /3
λ = 8.6036 10⁻⁷ m
for the separation distance from the central stripe, we use trigonometry
tan θ= y / L
y = L tan θ
the distance L is measured from the slits, it indicates that the light source is at x = 0.30 m from the slits
L = 2 -0.30
L = 1.70 m
let's calculate
y = 1.70 tan 35
y = 1.19 m