Answer : The molal freezing point depression constant of X is 
Explanation : Given,
Mass of urea (solute) = 5.90 g
Mass of X liquid (solvent) = 450.0 g
Molar mass of urea = 60 g/mole
Formula used :

where,
= change in freezing point
= freezing point of solution = 
= freezing point of liquid X= 
i = Van't Hoff factor = 1 (for non-electrolyte)
= molal freezing point depression constant of X = ?
m = molality
Now put all the given values in this formula, we get
![[0.4-(-0.5)]^oC=1\times k_f\times \frac{5.90g\times 1000}{60g/mol\times 450.0g}](https://tex.z-dn.net/?f=%5B0.4-%28-0.5%29%5D%5EoC%3D1%5Ctimes%20k_f%5Ctimes%20%5Cfrac%7B5.90g%5Ctimes%201000%7D%7B60g%2Fmol%5Ctimes%20450.0g%7D)

Therefore, the molal freezing point depression constant of X is 
Answer:
If you speak a futureless language, you will speak about time identically meaning you will feel as they are identical, it increases your propensity to save.
Explanation:
hope this helps you :)
Answer:
0.312 moles of H2O
Explanation:
no. of moles of ch4= mass ÷ molar mass
=2.5 ÷ 16.04
=0.156 moles of ch4
According to balanced chemical equation
CH4 : H2O
1 mole : 2 moles
0.156 moles : x moles
by cross multiplication
x= (0.156x2) ÷ 1
= 0.312 moles of H2O
Answer:
22:
Formular:

substitute:

23:
<em>Same</em><em> </em><em>element</em><em> </em><em>is</em><em> </em><em>represented</em><em> </em><em>by</em><em> </em><em>same</em><em> </em><em>number</em><em> </em><em>of</em><em> </em><em>protons</em><em>.</em><em> </em>
Answer:
6 protons. 6 protons
7 neutrons. 8 neutrons
6 electrons. 6 electrons
Note: <u>Atoms</u><u> </u><u>with</u><u> </u><u>same</u><u> </u><u>proton</u><u> </u><u>number</u><u> </u><u>but</u><u> </u><u>different</u><u> </u><u>mass</u><u> </u><u>number</u><u> </u><u>are</u><u> </u><u>called</u><u> </u><u>isotopes</u>
Answer:
378mL
Explanation:
The following data were obtained from the question:
Pressure (P) = 99.19 kPa
Temperature (T) = 28°C
Number of mole (n) = 0.015 mole
Volume (V) =...?
Next, we shall convert the pressure and temperature to appropriate units. This is illustrated below:
For Pressure:
101.325 KPa = 1 atm
Therefore, 99.19 kPa = 99.19/101.325 = 0.98 atm
For Temperature:
T(K) = T(°C) + 273
T(°C) = 28°C
T(K) = 28°C + 273 = 301K.
Next we shall determine the volume of N2. The volume of N2 can be obtained by using the ideal gas equation as shown below:
PV = nRT
Pressure (P) = 0.98 atm
Temperature (T) = 301K
Number of mole (n) = 0.015 mole
Gas constant (R) = 0.0821atm.L/Kmol.
Volume (V) =...?
0.98 x V = 0.015 x 0.0821 x 301
Divide both side by 0.98
V = (0.015 x 0.0821 x 301) /0.98
V = 0.378 L
Finally, we shall convert 0.378 L to millilitres (mL). This is illustrated below:
1L = 1000mL
Therefore, 0.378L = 0.378 x 1000 = 378mL
Therefore, the volume of N2 collected is 378mL