Does mass<span> alone provide no information about the amount or size of a measured quantity? No, we need combine </span>mass<span> and </span>volume<span> into "one equation" to </span>determine<span> "</span>density<span>" provides more ... </span>g/mL<span>. An </span>object has<span> a mass of </span>75 grams<span> and a volume of </span>25 cc<span>. ... A </span>certain object weighs 1.25 kg<span> and </span>has<span> a </span>density of<span> </span>5.00 g/<span>mL</span>
kdjsbjsof in bwjfiejwnjfifihdhwhbsd
Answer:
0.075 moles of iron oxide would be produced by complete reaction of 0.15 moles of iron.
Explanation:
The balanced reaction is:
4 Fe + 3 O₂ → 2 Fe₂O₃
By reaction stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of moles of each compound participate in the reaction:
- Fe: 4 moles
- O₂: 3 moles
- Fe₂O₃: 2 moles
You can apply the following rule of three: if by stoichiometry 4 moles of Fe produce 2 moles of Fe₂O₃, 0.15 moles of Fe produce how many moles of Fe₂O₃?

moles of Fe₂O₃= 0.075
<u><em>0.075 moles of iron oxide would be produced by complete reaction of 0.15 moles of iron.</em></u>