Answer:

Yes it is better to pull the rope rather than push it
Explanation:
Let the force is applied at an angle of 60 degree
so we will have net vertical force on the crate is given as

here we know




now friction force on the crate is given as




Yes it is better to pull the rope rather than push it
Answer : Yes, distance measurements based on the speed of light used for objects in space.
Explanation : A light year is measurement of distance that light travel in a one year.
In a one year light travels 9460000000000 kilometer.
We know that, speed of light is 
and time is 31536000 seconds in 1 year
so, distance = speed of light X time
Now, the light year is 
Example : The nearest star to earth is about 4.3 light year away.
Explanation:
Sucrose is a disaccharide which is composed of fructose and glucose. Sucrose molecule has oxygen atoms bonded to hydrogen atoms (O-H bonds - Polar groups) on all ends of its double 6-Carbon ring. The areas near the oxygen atoms are slightly negative, and the areas near the hydrogen atoms are slightly positive that is, the O-H bonds are polar. They bond with the neighbouring Oxygen and Hydrogen atoms because of their
dipole - dipole attractions and hence hydrogen bonds are formed.
However, the covalent bonds within the molecule aren't broken. But rather, the hydrogen bonds holding the sucrose molecules in the crystalline lattice.
When distance<span> is increased the amount of </span>force<span> needed will depend on the </span>mass<span> of the object. </span>
<u>Answer:</u>
<em>The initial distance between the trains is 1450 m.
</em>
<u>Explanation:</u>
In the question two trains are of equal length 400 m and moves at a uniform speed of 72 km/h. train A is moving ahead of train B. If the train B has to overtake train A it should accelerate.
Train B’s acceleration is
and it accelerated for 50 seconds.
<em>
</em>
<em>t=50 s
</em>
<em>initial speed u=72km/h
</em>
<em>we have to convert this speed into m/s </em>
<em>
</em>
<em>Distance covered in accelerating phase
</em>
<em>
</em>
<em>
</em>
If a train is just behind another, the distance covered by the train located behind during overtaking phase will be equal to the sum of the lengths of the trains.
<em>Here length of train A+length of train
</em>
<em>Hence the initial distance between the trains =
</em>