They are eaten by Tertiary consumers
The grams of oxygen that are required to produce 1 mole of H₂O is 16 g ( answer B)
<u><em> calculation</em></u>
2 CH₄ + 2NH₃ +3 O₂ → 2HCN + 6H₂O
step 1: use the mole ratio to find moles of O₂
from equation above the mole ratio of O₂: H₂O is 3:6 therefore the moles of O₂ = 1 mole x3/6 =0.5 moles
step 2: find mass of O₂
mass= moles x molar mass
from periodic table the molar mass of O₂ = 16 x2= 32 g/mol
mass O₂ = 0.5 moles x 32 g/mol = 16 g (answer B)
Answer:
yqaeh
Explanation:
Electrolysis of acidified water
Water is a poor conductor of electricity, but it does contain some hydrogen ions , H +, and hydroxide ions, OH -. These ions are formed when a small proportion of water molecules naturally dissociate . ... H + ions are attracted to the cathode , gain electrons and form hydrogen gas.
Weak bases are alkaline solution that does not get completely dissociated. The dissociation constant will be the ratio of the concentration of the products to the reactants.
<h3>What is a weak base ionization constant?</h3>
The weak base ionization constant is the equilibrium constant that is given as the division of the products of the ionization to the concentration of the reactants.
The reaction for HCO₃ is given as:
HCO₃⁻ + OH⁻ ⇄ CO₃²⁻ + H₂O
The value of Ka for the given reaction will be:
Ka = [CO₃²⁻][H₂O] ÷ [HCO₃⁻ ][OH⁻]
Therefore, the Ka of the weak carbonic acid is given as the ratio of the concentration of the products to the reactants.
Learn more about the weak ionization constant here:
brainly.com/question/27200344
#SPJ1
Answer:
(C) the physical state of each reactant and product
Explanation:
Hope this helps