A stove needs gas to burn (I only have one off the top of my head, sorry :/)
C; The Valence electrons spend more time around the atom of F
Answer:
4) 0.26 atm
Explanation:
In the process:
Benzene(l) → Benzene(g)
ΔG° for this process is:
ΔG° = -RT ln Q
<em>Where Q = P(Benzene(g)) / P°benzene(l) P° = 1atm</em>
ΔG° = 3700J/mol = -8.314J/molK * (60°C + 273.15) ln P(benzene) / 1atm
1.336 = ln P(benzene) / 1atm
0.26atm = P(benzene)
Right answer is:
<h3>4) 0.26 atm
</h3><h3 />
First, we have to see how K2O behaves when it is dissolved in water:
K2O + H20 = 2 KOH
According to reaction K2O has base properties, so it forms a hydroxide in water.
For the reaction next relation follows:
c(KOH) : c(K2O) = 1 : 2
So,
c(KOH)= 2 x c(K2O)= 2 x 0.005 = 0.01 M = c(OH⁻)
Now we can calculate pH:
pOH= -log c(OH⁻) = -log 0.01 = 2
pH= 14-2 = 12
Answer:
1) 2Al + 6HCl ⟶ 2AlCl₃ + 3H₂
Fe + 2HCl ⟶ FeCl₂ + H₂
2) Cu = 2.5 g; Al = 3.5 g; Fe = 4.0 g
Explanation:
1) Possible reactions
2Al + 6HCl ⟶ 2AlCl₃ + 3H₂
Fe + 2HCl ⟶ FeCl₂ + H₂
2) Mass of each metal
a) Mass of Cu
The waste was the unreacted copper.
Mass of Cu = 2.5 g
b) Masses of Al and Fe
We have two relations
:
Mass of Al + mass of Fe = 10 g - 2.5 g = 7.5 g
H₂ from Al + H₂ from Fe = 6.38 L at NTP
i) Calculate the moles of H₂
NTP is 20 °C and 1 atm.

(ii) Solve the relationship
Let x = mass of Al. Then
7.5 - x = mass of Fe
Moles of Al = x/27
Moles of Fe = (7.5 - x)/56
Moles of H₂ from Al = (3/2) × Moles of Al = (3/2) × (x/27) = x
/18
Moles of H₂ from Fe = (1/1) × Moles of Fe = (7.5 - x)/56
∴ x/18 + (7.5 - x)/56 = 0.2652
56x + 18(7.5 - x) = 267.3
56x + 135 - 18x = 267.3
38x = 132.3
x = 3.5 g
Mass of Al = 3.5 g
Mass of Fe = 7.5 g - 3.5 g = 4.0 g
The masses of the metals are Cu = 2.5 g; Al = 3.5 g; Fe = 4.0 g