Answer: The component has a higher boiling point
Explanation:
Answer:
2C3H6 + 9 O2 ---> 6 CO2 + 6 H2O
Explanation:
Answer:
Heat flows from the block at high temperature to the one with lower temperature
Explanation:
The direction of heat flow is from a body at higher temperature to one with a lower temperature.
- Temperature gradient determines the way and manner in which heat is dissipated.
- As a system tend to increase entropy, it ensures that heat moves from hotter body to a colder body.
- Heat movement here is by conduction as the body touches.
- When both bodies reaches the same temperature, thermal equilibrium is established.
Answer: 13.9 g of will be produced from the given mass of oxygen
Explanation:
To calculate the moles :
The balanced chemical reaction is:
According to stoichiometry :
7 moles of produce = 6 moles of
Thus 0.900 moles of will produce = of
Mass of
Thus 13.9 g of will be produced from the given mass of oxygen
You need the set of reactions that goes from ammonia to nitric acid.
<span>
1) 4NH3(g)+5O2(g)-->4NO(g)+6H2O(g)
2) 2NO(g)+O2(g)-->2NO2(g)
3) 3NO2(g)+H2O(l)-->2HNO3(aq)+NO(g)
State the ratio of moles of HNO3 to NH3:
4 moles of NH3 produce 4 mole of NO,
4 moles of NO produce 4 moles of NO2
4 moles of NO2 produce 4 * (2 / 3) moles of HNO3 = 8/3 moles of HNO3.
=> (8/3) moles HNO3 : 4 moles NH3
Calculate the number of moles of HNO3 in 900.00 l of 0.140 M solution
M = n / V => n = M * V = 0.140 M * 900.00 liter = 126 moles HNO3
Use proportions:
(</span><span>8/3) moles HNO3 / 4 moles NH3 = 126 moles HNO3 / x
=> x = 126 moles HNO3 * 4 moles NH3 / (8/3 moles HNO3) = 189 moles NH3
Convert moles to grams:
molar mass NH3 = 14 g/mol + 3 * 1g/mol = 17 g/mol
mass in grams = number of moles * molar mass = 189 moles * 17 g/mol = 3213 g
Answer: 3213 g.
</span>