Add the change in temperature to your substance's original temperature to find its final heat. For example, if your water was initially at 24 degrees Celsius, its final temperature would be: 24 + 6, or 30 degrees Celsius.
A possible cause of a large percentage of error in an
experiment where MgO is produced from the combustion of magnesium would be not all of the Mg has
completely reacted. <span>
I hope this helps and if you have any further questions, please don’t hesitate
to ask again. </span>
Answer:
C
Explanation:
okay, you need to look at the structures of the particles of matter in the solid, liquid and gas.
- particles in a solid are in fixed positions, where they can only vibrate in those positions ( take a look at ice, or rather, a brick)
- liquids have very small or rather, no spaces between them, but they can slide or rub against each other, like people in a <em>really tight</em> crowd I guess
- gas particles have very large spaces between them and they move randomly. these exibit what's called brownian motion.
- since water particles (and all other liquid particles) have negligible spacings and limited movement, that allows the dye particles to move from a region of high concentration to that of a low concentration. the aim for this is for the mixture/solution to reach an equilibrium, that is the mixture must get to a point where all regions have the same concentration of the dye.
you can refer to your coursebooks :)
correct where wrong please:)
Hey there!
Molar mass NaCl = 58.44 g/mol
Number of moles
n = mass of solute / molar mass
n = 59.76 / 58.44
n = 1.0225 moles of NaCl
Volume in liters:
270 mL / 1000 => 0.27 L
Therefore:
M = number of moles / volume ( L )
M = 1.0225 / 0.27
= 3.78 M
Hope that helps!
Answer:
Explanation:
Hello there!
In this case, since the thermodynamic definition of the Gibbs free energy for a change process is:
It is possible to plug in the given H, T and S with consistent units, to obtain the correct G as shown below:
Best regards!