Answer:
A roller coasters accelerates from an initial velocity of of 6.0 m/s to a final velocity of 70 m/s over 4 seconds. What's the acceleration? Q. Acceleration only takes place when things speed up. Q. A drag racer accelerated from 0 m/s to 200 m/s in 5 s.
Explanation:
The size of the force varies inversely as the square of the distance between the two charges. Therefore, if the distance between the two charges is doubled, the attraction or repulsion becomes weaker, decreasing to one-fourth of the original value
First of all, let's just talk about the speed, and not get wound up
in the velocity. OK ?
If a fly is sitting on the rim of the wheel and the wheel is rotating, then for
each full revolution of the wheel, the fly travels the circumference of the
wheel, which is (2 π) x (radius of the wheel).
In 'N' revolutions, the fly travels (2 N π) x (the radius). and so on.
So if the wheel is going, let's say 71 revs per minute (RPM), a point
on the rim is moving at (2 π times 71) x (the radius) per minute.
Another way to say it:
Speed of a point on the circle = (2 π) x (rotation frequency) x (radius).
The 'rotation frequency' takes care of the unit of time, and the 'radius'
takes care of the unit of length, so the result is a speed.
The key principle is that crank length, just like frame size, should be proportional to the rider height and then modified to what fits the individual. There are 4 charts, two for the upright position and two for the aero position, depending upon how you race.
Answer:
Aluminium
Explanation:
When a body is immersed in a liquid partly or wholly it experiences an upward force which is called buoyant force.
The amount of buoyant force depends on the volume of body immersed, density of liquid and the value of acceleration due to gravity.
Here, the density of liquid is same in both the cases and g be the same. So, here the amount of buoyant force depends on the volume of body immersed.
As the density of lead is more than the density of aluminium, so the volume of aluminium is more than lead, as volume is equal to mass divided by density. So, the buoyant force acting on the aluminium is more than lead.