For a wave:
v = fλ
v is the velocity, f is the frequency, and λ is the wavelength.
Assuming the velocity of the wave doesn't change...
If you increase its frequency, its wavelength will shorten.
Answer:
false
Explanation:
discovered colours of the rainbow
Answer:
V = 20.5 m/s
Explanation:
Given,
The mass of the cart, m = 6 Kg
The initial speed of the cart, u = 4 m/s
The acceleration of the cart, a = 0.5 m/s²
The time interval of the cart, t = 30 s
The final velocity of the cart is given by the first equation of motion
v = u + at
= 4 + (0.5 x 30)
= 19 m/s
Hence the final velocity of cart at 30 seconds is, v = 19 m/s
The speed of the cart at the end of 3 seconds
V = 19 + (0.5 x 3)
= 20.5 m/s
Hence, the final velocity of the cart at the end of this 3.0 second interval is, V = 20.5 m/s
Answer:
The puck moves a vertical height of 2.6 cm before stopping
Explanation:
As the puck is accelerated by the spring, the kinetic energy of the puck equals the elastic potential energy of the spring.
So, 1/2mv² = 1/2kx² where m = mass of puck = 39.2 g = 0.0392 g, v = velocity of puck, k = spring constant = 59 N/m and x = compression of spring = 1.3 cm = 0.013 cm.
Now, since the puck has an initial velocity, v before it slides up the inclined surface, its loss in kinetic energy equals its gain in potential energy before it stops. So
1/2mv² = mgh where h = vertical height puck moves and g = acceleration due to gravity = 9.8 m/s².
Substituting the kinetic energy of the puck for the potential energy of the spring, we have
1/2kx² = mgh
h = kx²/2mg
= 59 N/m × (0.013 m)²/(0.0392 kg × 9.8 m/s²)
= 0.009971 Nm/0.38416 N
= 0.0259 m
= 2.59 cm
≅ 2.6 cm
So the puck moves a vertical height of 2.6 cm before stopping