Answer:
The required pumping head is 1344.55 m and the pumping power is 236.96 kW
Explanation:
The energy equation is equal to:

For the pipe 1, the flow velocity is:

Q = 18 L/s = 0.018 m³/s
D = 6 cm = 0.06 m

The Reynold´s number is:


Using the graph of Moody, I will select the f value at 0.0043 and 335339.4, as 0.02941
The head of pipe 1 is:

For the pipe 2, the flow velocity is:

The Reynold´s number is:


The head of pipe 1 is:

The total head is:
hi = 1326.18 + 21.3 = 1347.48 m
The required pump head is:

The required pumping power is:

Answer:
A flood happens when water overflows or soaks land that is normally dry. flooding, happens when a large storm or tsunami causes the sea to They soon fell ill and died from cholera, which is spread by Rice, wheat, and corn crops were destroyed. Excess water overflows and runs on top of the land.
Explanation:
hope this helps
Answer:
a) 1253 kJ
b) 714 kJ
c) 946 C
Explanation:
The thermal efficiency is given by this equation
η = L/Q1
Where
η: thermal efficiency
L: useful work
Q1: heat taken from the heat source
Rearranging:
Q1 = L/η
Replacing
Q1 = 539 / 0.43 = 1253 kJ
The first law of thermodynamics states that:
Q = L + ΔU
For a machine working in cycles ΔU is zero between homologous parts of the cycle.
Also we must remember that we count heat entering the system as positiv and heat leaving as negative.
We split the heat on the part that enters and the part that leaves.
Q1 + Q2 = L + 0
Q2 = L - Q1
Q2 = 539 - 1253 = -714 kJ
TO calculate a temperature for the heat sink we must consider this cycle as a Carnot cycle. Then we can use the thermal efficiency equation for the Carnot cycle, this one uses temperatures:
η = 1 - T2/T1
T2/T1 = 1 - η
T2 = (1 - η) * T1
The temperatures must be given in absolute scale (1453 C = 1180 K)
T2 = (1 - 0.43) * 1180 = 673 K
673 K = 946 C
Answer:
"Biofuels"
Explanation:
I don't know if this counts but I guess it's not one of those.