Answer: just do the same thing, but the problems are different
Explanation: try you best
The best and most correct answer among the choices provided by your question is the third choice or number 3.
<span>As an object falls freely toward the earth, the momentum of the object-earth system remains the same.</span>
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
In order to find the our own velocity with respect to land,we need to apply the theory of relative velocity.
Now consider the velocity of the ship traveling towards the north with respect to land as A.Consider our own velocity headed northwards as B.
The relative velocity is the velocity that the body A would appear to an observer on the body B and vice versa.
In this case the relative velocity would be arrived by summing up our velocity with the velocity of the ship as the object (I) is travelling in the ship.
Relative velocity = Velocity of Body A+ Velocity of Body B.
Velocity of the ship traveling towards the north with respect to land(A)= 13.0m/s. (Given)
Our own velocity headed northwards(B)= 2.8 m/s.
Relative velocity = Velocity of Body A+ Velocity of Body B.
Relative velocity= 13.0 + 2.8 = 15.8m/s.
Thus our own velocity with respect to the land is 15.8 m/s.
Answer:

Explanation:
We can calculate the acceleration experimented by the passenger using the formula
, taking the initial direction of movement as the positive direction and considering it comes to a rest:

Then we use Newton's 2nd Law to calculate the force the passenger of mass m experimented to have this acceleration:

Which for our values is:

Gregor Mendel was the first person to trace the characteristics of successive generations of a living thing.