1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Arisa [49]
2 years ago
5

A punter wants to kick a football so that the football has a total flight time of 4.70s and lands 56.0m away (measured along the

ground). Neglect drag and the initial height of the football.
How long does the football need to rise?

What height will the football reach?

With what speed does the punter need to kick the football?

At what angle (θ), with the horizontal, does the punter need to kick the football?
Physics
1 answer:
Sindrei [870]2 years ago
3 0

Answer:

Explanation:

How long does the football need to rise?

4.70/3 = 2.35 s

What height will the football reach?

h = ½(9.81)2.35² = 27.1 m

With what speed does the punter need to kick the football?

vy = g•t = 9.81(2.35) = 23.1 m/s

vx = d/t = 56.0/4.70 = 11.9 m/s

v = √(vx²+vy²) = 26.0 m/s

At what angle (θ), with the horizontal, does the punter need to kick the football?

θ = arctan(vy/vx) = 62.7°

You might be interested in
A proton that has a mass m and is moving at +164 m/s undergoes a head-on elastic collision with a stationary carbon nucleus of m
Irina18 [472]
The concept of this problem is the Law of Conservation of Momentum. Momentum is the product of mass and velocity. To obey the law, the momentum before and after collision should be equal:

m₁ v₁ + m₂v₂ = m₁v₁' + m₂v₂', where
m₁ and m₂ are the masses of the proton and the carbon nucleus, respectively,
v₁ and v₂ are the velocities of the proton and the carbon nucleus before collision, respectively,
v₁' and v₂' are the velocities of the proton and the carbon nucleus after collision, respectively,

m(164) + 12m(0) = mv₁' + 12mv₂'
164 = v₁' + 12v₂'  --> equation 1

The second equation is the coefficient of restitution, e, which is equal to 1 for perfect collision. The equation is

(v₂' - v₁')/(v₁ - v₂) = 1
(v₂' - v₁')/(164 - 0) = 1
v₂' - v₁'=164 ---> equation 2

Solving equations 1 and 2 simultaneously, v₁' =  -138.77 m/s and v₂' = +25.23 m/s. This means that after the collision, the proton bounced to the left at 138.77 m/s, while the stationary carbon nucleus move to the right at 25.23 m/s.
7 0
3 years ago
A 26.0 kg child plays on a swing having support ropes that are 2.40 m long. A friend pulls her back until the ropes are 45.0 ∘ f
Sloan [31]
A)Ep'=mgh=mgl(1-cosa).At the bottom of the swing Ep=0(reference level),so the potential energy as the child is just released is bigger than the potential energy at the bottom of the swing.;B)The speed of the child at the bottom of the swing-->v=√(2gh)=√[2gl(1-cosa)];C)I don't think that the tension does any work.
8 0
3 years ago
A circular ring with area 4.45 cm2 is carrying a current of 13.5 A. The ring, initially at rest, is immersed in a region of unif
Gwar [14]

Answer:

a) ( 0.0015139 i^ + 0.0020185 j^ + 0.00060556 k^ ) N.m

b) ΔU = -0.000747871 J

c)  w = 47.97 rad / s

Explanation:

Given:-

- The area of the circular ring, A = 4.45 cm^2

- The current carried by circular ring, I = 13.5 Amps

- The magnetic field strength, vec ( B ) = (1.05×10−2T).(12i^+3j^−4k^)

- The magnetic moment initial orientation, vec ( μi ) = μ.(−0.8i^+0.6j^)  

- The magnetic moment final orientation, vec ( μf ) = -μ k^

- The inertia of ring, T = 6.50×10^−7 kg⋅m2

Solution:-

- First we will determine the magnitude of magnetic moment ( μ ) from the following relation:

                    μ = N*I*A

Where,

           N: The number of turns

           I : Current in coil

           A: the cross sectional area of coil

- Use the given values and determine the magnitude ( μ ) for a single coil i.e ( N = 1 ):

                    μ = 1*( 13.5 ) * ( 4.45 / 100^2 )

                    μ = 0.0060075 A-m^2

- From definition the torque on the ring is the determined from cross product of the magnetic moment vec ( μ ) and magnetic field strength vec ( B ). The torque on the ring in initial position:

             vec ( τi ) = vec ( μi ) x vec ( B )

              = 0.0060075*( -0.8 i^ + 0.6 j^ ) x 0.0105*( 12 i^ + 3 j^ -4 k^ )

              = ( -0.004806 i^ + 0.0036045 j^ ) x ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

- Perform cross product:

          \left[\begin{array}{ccc}i&j&k\\-0.004806&0.0036045&0\\0.126&0.0315&-0.042\end{array}\right]  = \left[\begin{array}{ccc}-0.00015139\\-0.00020185\\-0.00060556\end{array}\right] \\\\

- The initial torque ( τi ) is written as follows:

           vec ( τi ) = ( 0.0015139 i^ + 0.0020185 j^ + 0.00060556 k^ )

           

- The magnetic potential energy ( U ) is the dot product of magnetic moment vec ( μ ) and magnetic field strength vec ( B ):

- The initial potential energy stored in the circular ring ( Ui ) is:

          Ui = - vec ( μi ) . vec ( B )

          Ui =- ( -0.004806 i^ + 0.0036045 j^ ) . ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

          Ui = -[( -0.004806*0.126 ) + ( 0.0036045*0.0315 ) + ( 0*-0.042 )]

          Ui = - [(-0.000605556 + 0.00011)]

          Ui = 0.000495556 J

- The final potential energy stored in the circular ring ( Uf ) is determined in the similar manner after the ring is rotated by 90 degrees with a new magnetic moment orientation ( μf ) :

          Uf = - vec ( μf ) . vec ( B )

          Uf = - ( -0.0060075 k^ ) . ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

          Uf = - [( 0*0.126 ) + ( 0*0.0315 ) + ( -0.0060075*-0.042 ) ]

          Uf = -0.000252315 J

- The decrease in magnetic potential energy of the ring is arithmetically determined:

          ΔU = Uf - Ui

          ΔU = -0.000252315 - 0.000495556  

          ΔU = -0.000747871 J

Answer: There was a decrease of ΔU = -0.000747871 J of potential energy stored in the ring.

- We will consider the system to be isolated from any fictitious forces and gravitational effects are negligible on the current carrying ring.

- The conservation of magnetic potential ( U ) energy in the form of Kinetic energy ( Ek ) is valid for the given application:

                Ui + Eki = Uf + Ekf

Where,

             Eki : The initial kinetic energy ( initially at rest ) = 0

             Ekf : The final kinetic energy at second position

- The loss in potential energy stored is due to the conversion of potential energy into rotational kinetic energy of current carrying ring.    

               -ΔU = Ekf

                0.5*T*w^2 = -ΔU

                w^2 = -ΔU*2 / T

Where,

                w: The angular speed at second position

               w = √(0.000747871*2 / 6.50×10^−7)

              w = 47.97 rad / s

6 0
3 years ago
Jeffery gains super strength and pushes two different objects with the same amount of force. Object A accelerates at 40 m/s2, an
Montano1993 [528]

Answer: Object B

Explanation: Acceleration is directly proportional to force and inversely proportional to mass. It implies that more massive objects accelerates at a slower rate.

5 0
3 years ago
________ reaction time involves selecting a specific and correct response from several choices when presented with several diffe
lukranit [14]
Simple reaction time involves selecting a specific and correct response from several choices when presented with several different stimuli. This is very important because historically, this was the first indicators of intelligence pioneered by Francis Galton. To measure one’s intelligence is to know how he quick a person could respond to the stimulus with an already expected response wherein the stimulus is given unknown to the receiver. In other terms, the intelligence is measured on how quick a person could grasp certain concepts and how he could think fast and answer them correctly. <span> </span>
4 0
3 years ago
Read 2 more answers
Other questions:
  • Most savage races do not understand how the Galaxy works. Let's see how well you humans interpret a simple observation. The fact
    13·1 answer
  • A 99.1-kg baseball player slides into second base. The coefficient of kinetic friction between the player and the ground is μk =
    7·1 answer
  • If it takes 10 seconds for a car to reach its top speed of 100 miles per hour, its acceleration would be. Help please
    8·1 answer
  • Find the missing properties of u, h, and x for water at 120◦ c, v = 0.5 m3 /kg
    14·1 answer
  • A small sphere is at rest at the top of a frictionless semicylindrical surface. The sphere is given a slight nudge to the right
    5·1 answer
  • What is the wavelength of an FM radio
    6·1 answer
  • Which of the following are Electromagnetic Waves?
    9·1 answer
  • The element radon is at the opposite end of the range, with the lowest specific heat of all naturally occurring elements. Radon'
    9·1 answer
  • Coal is an example of kinetic or potential energy
    8·2 answers
  • The gravitational field strength on earth is 10n/kg. find the weight of an object of mass 25kg​
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!