Answer:
10 moles of SO₂ are produced when 5 moles of FeS₂
Explanation:
Stoichiometry: it is the theoretical proportion in which the chemical species are combined in a chemical reaction. The stoichiometric equation of a chemical reaction relates molecules or number of moles of all the reagents and products that participate in the reaction.
In other words, stoichiometry establishes relationships between the molecules or elements that make up the reactants of a chemical equation with the products of said reaction. The relationships established are molar relationships (that is, moles) between the compounds or elements that make up the chemical equation.
The stoichiometric coefficients of a chemical reaction indicate the proportion in which said substances react.
Taking into account the above, you can apply the following rule of three: by stoichiometry if 4 moles of FeS₂ produce 8 moles of SO₂, then when reacting 5 moles of FeS₂ how many moles of SO₂ will they produce?

moles of SO₂= 10
<u><em>10 moles of SO₂ are produced when 5 moles of FeS₂</em></u>
Answer:
<h3>1. B</h3><h3>2. A</h3><h3>3. B</h3><h3>4. B</h3><h3>5. C</h3><h3>I HOPE IT HELPS :) 100% sureness</h3>
The answer
the speed of <span>the train traveling in kilometers per minute can be found by using the following method:
v = </span><span>30 miles per hour
</span><span>1 mile = 1.6 kilometers
just do the calculus by changing miles to kilometers
</span>1 mile = 1.6 kilometers, so 30 miles= 1.6 km x 30 = 48 km
so the speed of the train is
v=30 miles / hour = 48km / h = 48km / 60 mn = 0.8 km/ mn
the answer is
<span>C- 0.8 km/min</span>
Answer:
Explanation:
<u>1) First law of thermodynamic (energy balance)</u>
- Heat released by the the hot water (345K ) = Heat absorbedby the cold water (298 K) + Heat absorbed by the calorimeter
<u>2) Energy change of each substance:</u>
Heat released or absorbed = mass × Specific heat × change in temperature
- density of water: you may take 0.997 g/ ml as an average density for the water.
- mass of water: mass = density × volume = 50.0 ml × 0.997 g/ml = 49.9 g
- Specif heat of water: 1 cal / g°C
- Heat released by the hot water:
Heat₁ = 49.9 g × 1 cal / g°C × (345 K - 317 K) = 49.9 g × 1 cal / g°C × (28K)
- Heat absorbed by the cold water:
Heat₂ = 49.9 g × 1 cal / g°C × (317 K - 298 K) = 49.9 g × 1 cal / g°C × (19K)
- Heat absorbed by the calorimeter
Heat₃ = Ccal × (317 K - 298 K) = Ccal × (19K)
<u>4) Balance</u>
49.9 g × 1 cal / g°C × (28 K) = 49.9 g × 1 cal / g°C × (19 K) + Ccal × (19 K)
Ccal = [49.9 g × 1 cal / g°C × (28 K) - 49.9 g × 1 cal / g°C × (19 K) ] / 19K
Ccal = 23.6 cal/ K
- Convert to cal / K to Joule / K
23.6 cal / K × 4.18 J / cal = 98.6 J/K
Which rounded to 2 signficant figures leads to 99 J/k, which is the first choice.
Answer:
Scandium
Titanium
Vanadium
Chromium
Manganese
Iron
Cobalt
Nickel
Copper
Zinc
Yttrium
Zirconium
Niobium
Molybdenum
Technetium
Ruthenium
Rhodium
Palladium
Silver
Cadmium
Lanthanum
Hafnium
Tantalum
Tungsten
Rhenium
Osmium
Iridium
Platinum
Gold
Mercury
Actinium
Rutherfordium
Dubnium
Seaborgium
Bohrium
Hassium
Meitnerium
Darmstadtium
Roentgenium
Copernicium
Explanation:
all of those are transition metals lol