Answer:
Identifying whether or not an element is an ion is a very simple process. Identify the charge of the element. ... The number of electrons is equal to the atomic number minus the charge of the atom. Refer to an element with either a positive or negative charge as an ion.
Answer:
Explanation:
<u>1. Word equation:</u>
- <em>mercury(II) oxide → mercury + oxygen </em>
<u>2. Balanced molecular equation:</u>
<u>3. Mole ratio</u>
Write the ratio of the coefficients of the substances that are object of the problem:

<u>4. Calculate the number of moles of O₂(g)</u>
Use the equation for ideal gases:

<u>5. Calculate the number of moles of HgO</u>

<u>6. Convert to mass</u>
- mass = # moles × molar mass
- molar mass of HgO: 216.591g/mol
- mass = 0.315mol × 216.591g/mol = 68.3g
Answer:
<u>The temperature difference is</u> 
Explanation:
The formula that is to used is :
Δ
Δ
<em>where ,</em>
- <em>Δ
is the heat supplied in calories = 300cal</em> - <em>
is the mass of water taken = m (assumed)</em> - <em>Δ
is the change in temperature</em> - <em>
is the specific heat of water =
</em>
ΔT :

well when there is more kinetic energy in a solution the higher its temperature is going to be so the more the molecules are able to be help together, the lower the temperature the more difficult it would be to break the molecule apart in order to bond with it.
Explanation:
the answer will be 98.4 kJ