Answer: 88 Earth days
Explanation:
According to the Kepler Third Law of Planetary motion <em>“The square of the orbital period of a planet is proportional to the cube of the semi-major axis (size) of its orbit”.
</em>
<em />
In other words, this law states a relation between the orbital period
of a body (moon, planet, satellite) orbiting a greater body in space with the size
of its orbit:
(1)
If we assume the orbit is circular and apply Newton's law of motion and the Universal Law of Gravity we have:
(2)
Where
is the mass of the massive object and
is the universal gravitation constant. If we assume
constant and larger enough to consider
really small, we can write a general form of this law:
(3)
Where
is in units of Earth years,
is in AU (<u>1 Astronomical Unit is the average distane between the Earth and the Sun)</u> and
is the mass of the central object in units of the mass of the Sun.
This means when we are making calculations with planets in our solar system
.
Hnece, in the case of Mercury:
(4)
Isolating
:
(5)
(6)
This means the period of Mercury is 88 days.
Ans: Kinetic and potential energies are found in all objects. If an object is moving, it is said to have kinetic energy (KE). Potential energy (PE) is energy that is "stored" because of the position and/or arrangement of the object. The classic example of potential energy is to pick up a brick.
The two spheres have opposite charges.
<h3 /><h3 /><h3>What are types charge?</h3>
- A charge can be negatively charged or positively charged.
- When two charges have opposite signs, that is positive and negative signs, the two charges will attract each other.
- When the two charges have the same sign, it causes repulsion.
When a positive charge points downwards ↓ and the negative charge points upwards ↑, this causes attraction and shows that the two charges are different.
Thus, we can conclude that the two spheres have opposite charges.
Learn more about attraction and repulsion of charges here: brainly.com/question/2396080
The correct option is
a fire
In fact, a fire is a conversion of chemical energy (contained in the molecules of the initial substances) into thermal energy (the heat released by the fire itself), therefore this is an example of energy changing from one form to another. All the other objects, instead, do not represent any form of energy conversion.
The kinetic energy of this block-spring when the block has a speed (v) is given by K.E = 1/2 × (M + m/3)v².
<h3>What is kinetic energy?</h3>
Kinetic energy can be defined as a form of energy that is possessed by a person due to its motion or change in speed (acceleration).
<h3>How to calculate kinetic energy?</h3>
Mathematically, kinetic energy can be calculated by using this formula:
K.E = 1/2 × mv²
Where:
- K.E represents the kinetic energy.
- v represents the speed or velocity.
Since the mass of a segment of this spring is dm = (m/l) dx, the kinetic energy for each of its segment would be given by:
dK = 1/2 × (dm)Vx²
This ultimately implies that, the kinetic energy of this block-spring when the block has a speed (v) is given by:
K.E = 1/2 × Mv² + 1/2 × ¹∫₀((x²v²/l²)m/ldx
K.E = 1/2 × (M + m/3)v².
Read more on kinetic energy here: brainly.com/question/15848455
#SPJ4