1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gennadij [26K]
2 years ago
9

calculate the amount of heat (in btu) needed to raise the temp of 2.5lb of glass from 45°f to 350°f. the specific heat capacity

of glass is 0.187Btu/lb°f
Physics
1 answer:
Firlakuza [10]2 years ago
7 0
So you would use the equation Q=cmΔT, where c is the specific heat, m is the mass, and ΔT is change in temperature. Q, or heat added, would equal (0.187)(2.5)(350-45), which simplifies to 142.5875 btu.
You might be interested in
A 1022kg Caprice car stopped at an intersection is rear-ended by a 1620kg ranger truck moving with a speed of 14.5m/s. If the ca
Alika [10]

Answer:

Explanation:

mass of car, m = 1022 kg

mass of truck, M = 1620 kg

initial velocity of truck, U = 14.5 m/s

initial velocity of car, u = 0 m/s

Let the final velocity of car is v and the final velocity of truck is V.

Collision is elastic, so the coefficient of restitution, e = 1

Use conservation of momentum

initial momentum of car + initial momentum of truck = final momentum of car + final momentum of truck

m x u + M x U = m x v + M x V

0 + 1620 x 14.5 = 1022 v + 1620 V

23490 = 1022 v + 1620 V ..... (1)

Use the formula of coefficient of restitution

e = \frac{V_{1}-V_{2}}{u_{2}-u_{1}}

1 (14.5 - 0) = v - V

14.5 = v - V

V = v - 14.5 .... (2)

Put in equation (1)

23490 = 1022 v + 1620 (v - 14.5)

23490 = 1022 v + 1620 v - 23490

46980 = 2642 v

v = 17.8 m/s

Put in equation (2)

V = 17.8 - 14.5

V = 3.3 m/s

Thus, the speed of car is 17.8 m/s and the velocity of truck is 3.3 m/s after collision.

8 0
2 years ago
The electron gun in an old TV picture tube accelerates electrons between two parallel plates 1.4cm apart with a 28kV potential d
yulyashka [42]

Answer:

a)   F = 3.2 10⁻¹⁰ N , b)       v = 9.9 10⁷ m / s

Explanation:

a) The electric force is

       F = q E

The electric field is related to the potential reference

     V = E d

     E = V / d

Let's replace

    F = e V / d

Let's calculate

    F = 1.6 10⁻¹⁹ 28 10³ / 1.4 10⁻²

    F = 3.2 10⁻¹⁰ N

b) For this part we can use kinematics

          v² = v₀ + 2 a d

          v = √ 2 ad

Acceleration can be found with Newton's second law

        e V / d = m a

        a = e / m V / d

        a = 1.6 10⁻¹⁹ / 9.1 10⁻³¹ 28 10³ / 1.4 10⁻²

        a = 3,516 10⁻¹⁷ m / s²

Let's calculate the speed

       v = √ (2 3,516 10¹⁷ 1.4 10⁻²)

       v = √ (98,448 10¹⁴)

       v = 9.9 10⁷ m / s

3 0
2 years ago
As air pressure decreases, what happens
Naya [18.7K]

Answer:

I believe it is B, not 100% sure though

Explanation:

5 0
2 years ago
Using energy considerations and assuming negligible air resistance, show that a rock thrown from a bridge 23.5 m above water wit
Elodia [21]

As stated in the statement, we will apply energy conservation to solve this problem.

From this concept we know that the kinetic energy gained is equivalent to the potential energy lost and vice versa. Mathematically said equilibrium can be expressed as

\Delta KE = \Delta PE

\frac{1}{2}mv_f^2-\frac{1}{2} mv_0^2 = mgh_2-mgh_1

Where,

m = mass

v_{f,i} = initial and final velocity

g = Gravity

h = height

As the mass is tHe same and the final height is zero we have that the expression is now:

\frac{1}{2}v_f^2-\frac{1}{2} v_0^2 = gh_2

\frac{1}{2} (v_f^2-v_0^2) = gh_2

(v_f^2-v_0^2) = 2gh_2

v_f = \sqrt{2gh_2+v_0^2}

v_f = \sqrt{2(9.8)(23.5)+13.6^2}

v_f = 25.4m/s

7 0
3 years ago
A rock is thrown downward from an unknown height above the ground with an initial speed of 6.1 m/s. It strikes the ground 1.7 s
insens350 [35]

Answer:

24.531 m

Explanation:

t = Time taken = 1.7 s

u = Initial velocity = 6.1 m/s

v = Final velocity

s = Displacement

g = Acceleration due to gravity = 9.81 m/s² = a

Equation of motion

s=ut+\dfrac{1}{2}at^2\\\Rightarrow s=6.1\times 1.7+\dfrac{1}{2}\times 9.8\times 1.7^2\\\Rightarrow s=24.531\ m

The initial height of the rock above the ground is 24.531 m

7 0
2 years ago
Other questions:
  • A 0.5 μF and a 11 μF capacitors are connected in series. Then the pair are connected in parallel with a 1.5 μF capacitor. What i
    11·1 answer
  • In each of two coils the rate of change of the magnetic flux in a single loop is the same. The emf induced in coil 1, which has
    9·2 answers
  • If the motor exerts a constant force of 300 N on the cable, determine the speed of the 26-kg crate when it travels s = 10 m up t
    10·1 answer
  • What should you do if...
    14·1 answer
  • how long would it take for a radio wave sent from a space satellite circling mars to reach Earth? Assume that radio waves (a for
    8·1 answer
  • A tank 20 m deep and 7m wide is layered with 8m of oil,6m of water and 5m of mercury.complete total hydroatatic force.(density o
    6·1 answer
  • Will mark brainliest!! Answer fast and correct.
    13·1 answer
  • Light from the sun travels in electromagnetic waves. Which of these statements describe electromagnetic waves?
    11·1 answer
  • Let DrippyJazzz124 answer the QUESTION
    7·1 answer
  • How does the long shape of submarines and torpedoes reduce the dragthey feel when moving under water?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!