Answer:

Explanation:
Given :
μ = 0
σ = 1
For 89th percentile
using invariant norm ( area, μ, σ )
= inv. norm ( 0.89, 0, 1 )
= 1.23
or
P ( x >
) = 0.89


Now using Normal table, Z = 1.23
Therefore, 

Point charges q1=+2.00μC and q2=−2.00μC are placed at adjacent corners of a square for which the length of each side is 5.00 cm.?
Point a is at the center of the square, and point b is at the empty corner closest to q2. Take the electric potential to be zero at a distance far from both charges.
(a) What is the electric potential at point a due to q1 and q2?
(b) What is the electric potential at point b?
(c) A point charge q3 = -6.00 μC moves from point a to point b. How much work is done on q3 by the electric forces exerted by q1 and q2?
Answer:
a) the potential is zero at the center .
Explanation:
a) since the two equal-magnitude and oppositely charged particles are equidistant
b)(b) Electric potential at point b, v = Σ kQ/r
r = 5cm = 0.05m
k = 8.99*10^9 N·m²/C²
Q = -2 microcoulomb
v= (8.99*10^9) * (2*10^-6) * (1/√2m - 1) / 0.0500m
v = -105 324 V
c)workdone = charge * potential
work = -6.00µC * -105324V
work = 0.632 J
Hi,
The goal of a theory is <u>to explain natural and physical </u><u>phenomena.</u>
Hope it helps you...
Pls mark brainliest if it helps you...
(Answered by Benjemin)
Answer:
357.6g
Explanation:
Given parameters:
Density = 12.459g/cm³
Volume of metal = 28.7cm³
Unknown:
Mass of metal = ?
Solution:
The density of a substance is its mass per unit volume.
To find the mass;
Mass of metal = density x volume
Now insert the parameters and solve;
Mass of metal = 12.459 x 28.7 = 357.6g
Answer:
The velocity of the hay bale is - 0.5 ft/s and the acceleration is 
Solution:
As per the question:
Constant velocity of the horse in the horizontal, 
Distance of the horse on the horizontal axis, x = 10 ft
Vertical distance, y = 20 ft
Now,
Apply Pythagoras theorem to find the length:


Now,
(1)
Differentiating equation (1) w.r.t 't':


where
= Rate of change of displacement along the horizontal
= Rate of change of displacement along the vertical
= velocity along the x-axis.
= velocity along the y-axis



Acceleration of the hay bale is given by the kinematic equation:




