Answer:
None of these are correct, because there is no way to balance this equation, but I hope these steps help you figure out your answer.
Explanation:
Count out the single amounts of elements you have on both sides of the equation. To be balanced, you need to have the exact same for each element.
Before balanced Left side.
Cl-2
O-8
H-2
Before balanced right side.
H-1
Cl-1
O-3
That means we need to increase Hydrogen, Chlorine and Oxygen on the right for sure and see how that affects the equation. You can keep adding the Coefficients until the # of elements begin to match on each side.
(I tried to balance this equation, it doesn't work, there is too much on the reactants side for what the product is.)
The formula is m = D x V
D = <span>13.69 g/cm^3.
</span>V = <span>15.0 cm^3
the mass of the liquid mercury is m= </span>13.69 g/cm^3 x 15.0 cm^3 = 195g
the molar mass of Hg is 200,
1 mole of Hg = 200g Hg, so #mole of Hg= 195 / 200 = 0.97 mol
but we know that
1 mole = 6.022 E23 atoms
0.97 mole=?
6.022 E23 atoms x 0.97 / 1 mole = 5.84 E23 atoms
One may know how close the molecules within the substances are packed together. Hot substances have molecules that are farther apart, cold substances have molecules that are more compact/closer together.
Answer:
A3B3
Explanation:
Molecular formula = n x empirical formula
(AB) n = 90
MM of AB = 30 g/mol
30n = 90
Divide both side by the coefficient n i.e 30
n = 90/30 = 3
Molecular formula = n x empirical formula
Molecular formula = n x (AB)
Molecular formula = 3(AB) = A3B3
All organic compounds have at least 1 carbon and 2 hydrogen atoms.