The answer is D hope this helps
Answer:
Option B. At pH extremes, the amino acid molecules mostly carry a net charge, thus increasing their solubility in polar solvent.
C. At very low or very high pH, the amino acid molecules have increased charge, thus form more salt bonds with water solvent molecules.
Explanation:
When the specific heat capacity of the water is 4.18 J/g.°C so, we are going to use this formula to get the heat for cooling three phases changes from steam to liquid and from liquid to ice (solid) :
when Q = M*C*ΔT
Q is the heat in J
and M is the mass in gram = 1 mol H2O * 18 g/mol(molar mass) = 18 g
C is the specific heat J/g.°C
ΔT is the change in temperature
Q = Mw *[ ( Csteam * ΔTsteam)+(Cw*ΔTw) + (Cice * ΔT ice)]
= 18 g * [(2.01 * (155-100°C)) + (4.18 * (100-0°C)) + (2.09 * (0 - 55 °C))]
∴Q = 7444.8 J
and when we know that the heat of fusion for water = 334J/g
and heat of vaporization for water = 2260J/g
∴Q for the two phases changes = M * (2260+334)
= 18 * (2260+334)
= 46692 J
∴ Q total = 7444.8 + 46692 = 54136.8 J
The answer is evaporation<span>.Evaporation is the vaporization of the liquid from its surface into gaseous phase, without boiling the liquid. When all the liquid has passed to gaseous phase the salt dissolved in the salt water will remain as solid crystals.</span><span />
Because of the crystal structure of the ice, ice has lower density than liquid water. So the volume of the ice of same mass is greater than water. When melting, the volume will decrease.