The specific heat capacity of the given substance is -0.66 J/g°C.
<u>Explanation:</u>
The heat absorbed by any substance is the product of its mass, specific heat capacity and change in temperature.
q = m × c × ΔT
m is the mass in grams
q = amount of heat released or absorbed in J
ΔT = change in temperature in °C = 5 -50 = -45°C
c = specific heat capacity in J/g°C
c = 
Plugin the values, we will get,
c = 
= -0.66 J/g°C
<span>When a
substance is heated, its atoms gain
energy and begin to vibrate rapidly within the lattice
of the substance (the substance expands). As more heating continues, the atoms
gain even more energy and move more rapidly until they are able to overcome the
force of the bonds, that hold the atoms together
in the lattice, until the structure is disrupted. </span>
Answer:
1) 0,081 ft/s
2) 0,746 lb/s
Explanation:
The relation between flow and velocity of a fluid is given by:
Q=Av
where:
- Q, flow [ft3/s]
- A, cross section of the pipe [ft2]
- v, velocity of the fluid [ft/s]
1)
To convert our data to appropiate units, we use the following convertion factors:
1 ft=12 inches
1 ft3=7,48 gallons
1 minute=60 seconds
So,

As the pipe has a circular section, we use A=πd^2/4:

Finally:
Q=vA......................v=Q/A

2)
The following formula is used to calculate the specific gravity of a material:
SG = ρ / ρW
where:
- ρ = density of the material [lb/ft3]
- ρW = density of water [lb/ft3] = 62.4 lbs/ft3
then:
ρ = SG*ρW = 1,49* 62,4 lb/ft3 = 93 lb/ft3
To calculate the mass flow, we just use the density of the chloroform in lb/ft3 to relate mass and volume:

1.34 L of HF
Explanation:
We have the following chemical reaction:
Sn (s) + 2 HF (g) → SnF₂ (s) + H₂ (g)
First we calculate the number of moles of SnF₂:
number of moles = mass / molecular weight
number of moles of SnF₂ = 5 / 157 = 0.03 moles
From the chemical reaction we see that 1 mole of SnF₂ are produced from 2 moles of SnF₂. This will mean that 0.03 moles of SnF₂ are produced from 0.06 moles of HF.
Now at standard temperature and pressure (STP) we can use the following formula to calculate the volume of HF:
number of moles = volume / 22.4 (L/mole)
volume of HF = number of moles × 22.4
volume of HF = 0.06 × 22.4 = 1.34 L
Learn more about:
problems with gases at STP
brainly.com/question/8857334
#learnwithBrainly