1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Greeley [361]
3 years ago
11

A 26-tooth pinion rotating at a uniform 1800 rpm meshes with a 55-tooth gear in a spur gear reducer. Both pinion and gear are ma

nufactured to a quality level of 10. The transmitted tangential load is 22 kN. Conditions are such that Km = 1.7. The teeth are standard 20-degree, full-depth. The module is 5 and the face width 62 mm. Determine the bending stress when the mesh is at the highest point of single tooth contact.
Engineering
1 answer:
tatyana61 [14]3 years ago
6 0

Answer:

The bending stress of the face tooth is  \sigma _{bg} = 502.82 MPa

Explanation:

From the question we are told that

        The number of tooth of the pinion is  N_t = 26 \ tooth

         The velocity of rotation is given as \omega_p = 1800 rpm

         The number of tooth is of the gear is  N_g = 55 \ tooth

        The quality level is Q_r = 10

          The transmitted tangential load is F_T = 22\ kN = 22 KN * \frac{1000N}{1KN} = 22*10^3 N

                                                                    k_m = 1.7

        The angle of the teeth is  \theta_t = 20^o

         The module is  M= 5

         The face width is W_f = 62mm

The diameter of the pinion is mathematically represented as

                d_p = M * N_t

Substituting the values

                d_p = 5 *26

                    = 130 mm = \frac{130}{1000} = 0.130m

The pitch line velocity is mathematically represented as

                     V_t = \frac{d_p }{2} \frac{2 \pi \omega_p}{60}

Substituting values

                          = \frac{0.130}{2} * \frac{2 * 3.142 * 1800 }{60}

                          = 12.25\  m/s

Generally the dynamic factor is mathematically represented as

                      K_v = [\frac{A}{A +\sqrt{200V_t} } ]^B

Now B is a constant that is mathematically represented as

                B = \frac{(12 -Q_r )^{2/3}}{4}

substituting values

                  = \frac{(12- 10 )^{2/3}}{4}

                  =0.3968

A is also a constant that is mathematically represented as

              A = 50 + 56(1 -B)

Substituting values

             = 50 +56 (1- 0.3968)

             = 83.779

Substituting these value into the equation for dynamic factor we have

           K_v = [\frac{83.779}{83.779 + \sqrt{200 * 12.25} } ]^{0.3968}

                = 0.831

The geometric bending factor for a 20° profile from table

"AGMA Bending Geometry Factor J for 20°, Full -Depth Teeth with HPSTC Loading , Table 2-9"                

That corresponds to 55 tooth gear meshing with 26 pinion is

                   J_g = 0.41

the diameter pitch can be mathematically represented as

              p_d = \frac{1}{M}

Substituting values

            p_d  = \frac{1}{5}

                =0.2mm^{-1}

The mathematically representation for gear tooth bending stress in the teeth face is as follows

          \sigma_{bg} = \frac{F_T \cdot p_d }{W_f * J_g}\frac{K_a K_{dt} }{K_v} K_s K_B K_t ----(1)

Where W_t is the tangential load

            W_f is the face width

            K_a is the application factor  this is obtained from table "Application Factors, Table 12-17 " and the value  is  K_a  = 1

            K_{dt} is the load distributed factor

            K_s is the size factor

             K_B is the rim thickness factor which is obtained for M which has a value  1

           K_t is the idler

Substituting values into equation 1

     \sigma_{bg} = \frac{22*10^3 *0.2}{62 * 0.41} * \frac{1 * 1.7 }{0.831}  * 1 *1 *1.42

            = 502.82  N/mm^2

            = 502.82 * 1000 * \frac{N}{m^2}

           = 502.82 MPa

           

           

       

 

               

                 

You might be interested in
A rectangular channel 2 m wide carries 3 m3 /s of water at a depth of 1.2 m. If an obstruction 40 cm wide is placed in the middl
Marta_Voda [28]

harden you could either me or leave

harden you could either me or leave

Xharden you could either me or leave

harden you could either me or leave

BBB

harden you could either me or leave

GO WATCH AFTER OUT NOW RADDED RB

harden you could either me or leave

harden you could either me or leave

harden you could either me or leave

harden you could either me or leave

GO WATCH AFTER OUT NOW RADDED R

harden you could either me or leave

GO WATCH AFTER OUT NOW RADDED R

harden you could either me or leave

harden you could either me or leave

GO WATCH AFTER OUT NOW RADDED R

8 0
3 years ago
A cylindrical insulation for a steam pipe has an inside radius rt = 6 cm, outside radius r0 = 8 cm, and a thermal conductivity k
goldfiish [28.3K]

Answer:

heat loss per 1-m length of this insulation is 4368.145 W

Explanation:

given data

inside radius r1 = 6 cm

outside radius r2 = 8 cm

thermal conductivity k = 0.5 W/m°C

inside temperature t1 = 430°C

outside temperature t2 = 30°C

to find out

Determine the heat loss per 1-m length of this insulation

solution

we know thermal resistance formula for cylinder that is express as

Rth = \frac{ln\frac{r2}{r1}}{2 \pi *k * L}   .................1

here r1 is inside radius and r2 is outside radius L is length and k is thermal conductivity

so

heat loss is change in temperature divide thermal resistance

Q = \frac{t1- t2}{\frac{ln\frac{r2}{r1}}{2 \pi *k * L}}

Q = \frac{(430-30)*(2 \pi * 0.5 * 1}{ln\frac{8}{6} }

Q = 4368.145 W

so heat loss per 1-m length of this insulation is 4368.145 W

4 0
3 years ago
**Please Help. ASAP**
natima [27]

Answer:

The answer is below

Explanation:

1)

\frac{v-u}{a} =t\\\\Making \ v\ the \ subject\ of\ formula:\\\\First \ cross-multiply:\\\\v-u=at\\\\add\ u\ to \ both\ sides:\\\\v-u+u=at+u\\\\v=u+at

2)

\frac{y-x^2}{x}=3z\\ \\Making\ y\ the\ subject\ of\ formula:\\\\First \ cross \ multiply:\\\\y-x^2=3xz\\\\y=3xz+x^2\\\\y=x(x+3z)

3)

x+xy=y\\\\Making\ x\ the\ subject\ of\ formula:\\\\x(1+y)=y\\\\Divide\ through\ by\ 1+y\\\\\frac{x(1+y)}{1+y} =\frac{y}{1+y} \\\\x=\frac{y}{1+y}

4)

x+y=xy\\\\Making\ x\ the\ subject\ of\ formula:\\\\Subtract\ x\ from \ both\ sides:\\\\x+y-x=xy-x\\\\y=xy-x\\\\y=x(y-1)\\\\Divide\ through\ by \ y-1\\\\\frac{y}{y-1} =\frac{x(y-1)}{y-1}\\ \\x=\frac{y}{y-1}

5)

x=y+xy\\\\Making\ x\ the\ subject\ of\ formula:\\\\Subtract\ xy\ from \ both\ sides:\\\\x-xy=y+xy-xy\\\\x-xy=y\\\\x(1-y)=y\\\\Divide\ through\ by \ 1-y\\\\\frac{x(1-y)}{1-y} =\frac{y}{1-y}\\ \\x=\frac{y}{1-y}

6)

E=\frac{1}{2}mv^2-\frac{1}{2}mu^2\\  \\Making\ u\ the\ subject \ of\ formula:\\\\Multiply \ through\ by \ 2\\\\2E=mv^2-mu^2\\\\mu^2=mv^2-2E\\\\Divide\ through\ by\ m:\\\\u^2=\frac{mv^2-2E}{m}\\ \\Take\ square\ root\ of \ both\ sides:\\\\u=\sqrt{\frac{mv^2-2E}{m}}

7)

\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\\  \\Making\ y\ the\ subject \ of\ formula:\\\\\frac{x^2}{a^2}-1=\frac{y^2}{b^2}\\\\Multiply\ through\ by\ b^2\\\\b^2(\frac{x^2}{a^2} -1)=y^2\\\\Take\ square\ root\ of\ both\ sides:\\\\y=\sqrt{b^2(\frac{x^2}{a^2} -1)}

8)

ay^2=x^3\\\\Make\ y\ the\ subject\ of\ formula:\\\\Divide\ through\ by\ a:\\\\y^2=\frac{x^3}{a}\\ \\Take\ square\ root\ of\ both\ sides:\\\\y=\sqrt{\frac{x^3}{a}} \\

4 0
3 years ago
A company has a stack that emits a hazardous air pollutant. The ground mass concentration directly downwind of the plume sometim
fredd [130]

Answer:

do the wam wam

Explanation:

3 0
3 years ago
Read 2 more answers
The federal highway administration reports nearly
levacccp [35]

Explanation:

The federal highway administration reports nearly 800 work zone fatalities per year.

8 0
3 years ago
Other questions:
  • Carbon dioxide steadily flows into a constant pressure heater at 300 K and 100 kPa witha mass flow rate of 9.2 kg/s. Heat transf
    11·1 answer
  • The denominator of a fraction is 4 more than the numenator. If 4 is added to the numenator and 7 is added to the denominator, th
    15·1 answer
  • Which of the code pieces below should replace the underline?public class Test{public static void main(String[] args){Test test =
    8·1 answer
  • A six-lane divided highway (three lanes in each direction) is on rolling terrain with two access points per mile and has 10- ft
    7·1 answer
  • An ice hockey player is skating on an ice rink. The rink has a coefficient of kinetic friction of roughly 0.1. If the normal for
    6·1 answer
  • How long will it take a Honda Civic to travel 118 miles if it is travelling at an average speed of 72 mph?
    6·1 answer
  • . An ideal vapor compression refrigeration cycle operates with a condenser pressure of 900 kPa. The temperature at the inlet to
    14·1 answer
  • Discuss in detail the manners of interaction with opposite gender
    10·1 answer
  • I need to solve for d
    11·2 answers
  • What computer program can you use to publish and share a research project with others?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!