Answer:
x = 0.176 m
Explanation:
For this exercise we will take the condition of rotational equilibrium, where the reference system is located on the far left and the wire on the far right. We assume that counterclockwise turns are positive.
Let's use trigonometry to decompose the tension
sin 60 =
/ T
T_{y} = T sin 60
cos 60 = Tₓ / T
Tₓ = T cos 60
we apply the equation
∑ τ = 0
-W L / 2 - w x + T_{y} L = 0
the length of the bar is L = 6m
-Mg 6/2 - m g x + T sin 60 6 = 0
x = (6 T sin 60 - 3 M g) / mg
let's calculate
let's use the maximum tension that resists the cable T = 900 N
x = (6 900 sin 60 - 3 200 9.8) / (700 9.8)
x = (4676 - 5880) / 6860
x = - 0.176 m
Therefore the block can be up to 0.176m to keep the system in balance.
128.1-127.8= 0.3Hz
<span>129.1-128.1= 1.0Hz </span>
<span>129.1-127.8= 1.3Hz</span>
Answer:
<em>The magnitude of the force is 10 N</em>
Explanation:
<u>Coulomb's Law</u>
The electrostatic force between two charged objects is directly proportional to the product of their charges and inversely proportional to the square of the distance between the two objects.
Written as a formula:

Where:

q1, q2 = the objects' charge
d= The distance between the objects
We have two identical charges of q1=q2=1 c separated by d=30000 m, thus the magnitude of the force is:


F = 10 N
The magnitude of the force is 10 N
Here is the highly detailed, arcane, complex, technical form of Ohm's Law that is needed in order to answer this question ===> I = V / R .
Current = (voltage) / (resistance)
Current = (1.5 V) / (10 Ω)
<em>Current = 0.15 Ampere</em>
Temperature rise will be there in cylinder B more than in cylinder A because of internal energy.
what is internal energy?
The sum of the kinetic and chemical potential energies of all the particles in the system is the internal energy. Particles accelerate and pick up kinetic energy when energy is applied to increase the temperature.
Briefing:
Cylinder A uses the heat it absorbs to both work while expanding and to increase internal energy (or temperature).
While cylinder B solely uses the heat it absorbs to increase its internal energy
As a result, cylinder B's temperature rise is greater than cylinder A's.
To know more about internal energy visit:
brainly.com/question/11278589
#SPJ4