It mimics the real world accurately
Explanation:
Experiments conducted in the field clearly presents the real world at it is to the scientist. Hardly can any part be controlled precisely and this gives a near to perfect scenario.
- In the laboratory, for example, an organism is isolated from its environment and might not fully display its natural instinct and physiological capabilities.
- Most laboratory set up are driven towards a model instead of real life settings.
- The laboratory is more controlled and less varied and might truly represent the real world. It will only portray a part of the real world and series of further tests might have to be carried out to have a better model.
Learn more:
Experiment brainly.com/question/5096428
#learnwithBrainly
Answer:
54 Kobo
Explanation:
Units of <u>electricity</u> are measured in kilowatt hours (kWh).
Given information:
- 900 watt electric iron
- Appliance usage = 4 hours a week for 5 weeks
- Unit cost of electricity = 3 Kobo per kWh
<h3><u>Step 1</u></h3>
Convert the wattage of the electric iron from watts to kilowatts.
1000 watts (W) = 1 kilowatt (kW)
⇒ 900 watts = 1 ÷ 1000 = 0.9 kilowatts
This means that the power consumption of the electric iron is 0.9 kW per hour of use.
<h3><u>Step 2</u></h3>
Total hours spent pressing clothes:
= 4 hours per week for 5 weeks
= 4 × 5
= 20 hours
<u>Total power consumption</u>:
= number of kW × number of hours
= 0.9 × 20
= 18 kWh
<h3><u>Step 3</u></h3>
To find the <u>total cost</u>, multiply the total kWh by the cost per kWh:
⇒ Cost = 18 × 3 = 54 Kobo
The beginning development of a
star is marked by a supernova explosion, with the gases present in the nebula
being forced to scatter. As the star shrinks, radiation of the surface increases
and create pressure on the outside shell to push it away and forming a
planetary nebula or white dwarf.
KE = 2000 J
Explanation:
KE = (1/2)mv^2
= (1/2)(0.100 kg)(200 m/s)^2
= 2000 J