Answer:
Here's what I get.
Explanation:
According to Markovnikov's rule, the H will add to a terminal carbon, generating three resonance stabilized carbocations.
The Br⁻ ion will add to any of the three carbocations.
There are three possible products:
- 5-bromo-2,5-dimethylhexa-1,3-triene (1)
- 3-bromo-2,5-dimethylhexa-1,4-triene (<em>2</em>)
- 1-bromo-2,5-dimethylhexa-2,4-triene (3)
Answer:
Recall that, at the boiling point, we observe that both liquid and gas are at equilibrium with one another. This is true at every combination of applied pressure and boiling point temperature. ... The applied pressure will be greater than the vapor pressure, and all of the gas will condense into the liquid
<span>1.44x10^23 molecules of oxygen gas
The ideal gas law is
PV = nRT
where
P = pressure (800.0 Torr)
V = volume (5.60 L)
n = number of moles
R = Ideal gas constant (62.363577 L*Torr/(K*mol) )
T = absolute temperature (27C + 273.15 = 300.15 K)
Let's solve for n, the substitute the known values and solve.
PV = nRT
PV/RT = n
(800.0 Torr*5.60 L)/(62.363577 L*Torr/(K*mol)*300.15 K) = n
(4480 L*Torr)/(18718.42764 L*Torr/mol) = n
0.239336342 mol = n
So we have 0.239336342 moles of oxygen molecules. To get the number of atoms, we need to multiply by avogadro's number, so:
0.239336342 * 6.0221409x10^23 = 1.44x10^23</span>
<span>Magnetic quantum number specify orientation of electrons in magnetic field </span>and number of electron states (orbitals) in subshells..
Magnetic quantum number (ml) specifies the orientation in space of an orbital of a given energy and shape . Magnetic quantum number divides the subshell into individual orbitals which hold the electrons, there are 2l+1
orbitals in each subshell. For example, p orbitals (and their electrons) have three orientations in spase (px, py and pz).