Answer:
= -457.9 kJ and reaction is product favored.
Explanation:
The given reaction is associated with 2 moles of 
Standard free energy change of the reaction (
) is given as:
, where T represents temperature in kelvin scale
So, 
So, for the reaction of 1.57 moles of
, 
As,
is negative therefore reaction is product favored under standard condition.
Answer:
molar mass = 180.833 g/mol
Explanation:
- mass sln = mass solute + mass solvent
∴ solute: unknown molecular (nonelectrolyte)
∴ solvent: water
∴ mass solute = 17.5 g
∴ mass solvent = 100.0 g = 0.1 Kg
⇒ mass sln = 117.5 g
freezing point:
∴ ΔTc = -1.8 °C
∴ Kc H2O = 1.86 °C.Kg/mol
∴ m: molality (mol solute/Kg solvent)
⇒ m = ( - 1.8 °C)/( - 1.86 °C.Kg/mol)
⇒ m = 0.9677 mol solute/Kg solvent
- molar mass (Mw) [=] g/mol
∴ mol solute = ( m )×(Kg solvent)
⇒ mol solute = ( 0.9677 mol/Kg) × ( 0.100 Kg H2O )
⇒ mol solute = 0.09677 mol
⇒ Mw solute = ( 17.5 g ) / ( 0.09677 mol )
⇒ Mw solute = 180.833 g/mol
Percent error can be calculated by the difference of the theoretical value and the measured value divided by the theoretical value multiplied by 100 percent.
% error = 27.26 - 27.2 / 27.26 x100
% error = 0.22%
A value close to zero would mean that the measured value is more or less near the actual value.
Answer:
It is mentioned that the student is mixing chemicals A and B and observes the time taken for the color to change. However, in the experiment, it is noticed that the student has repeated the procedure five times and each time he or she is modifying the concentration of chemical B. Thus, it is clear that the concentration of chemical B is the independent variable in the experiment. An independent variable is illustrated as the variable, which is controlled or modified in the experiment.
Answer:
The specific rotation of D is 11.60° mL/g dm
Explanation:
Given that:
The path length (l) = 1 dm
Observed rotation (∝) = + 0.27°
Molarity = 0.175 M
Molar mass = 133.0 g/mol
Concentration in (g/mL) = 0.175 mol/L × 133.0 g/mol
Concentration in (g/mL) = 23.275 g/L
Since 1 L = 1000 mL
Concentration in (g/mL) = 0.023275 g/mL
The specific rotation [∝] = ∝/(1×c)
= 0.27°/( 1 dm × 0.023275 g/mL
)
= 11.60° mL/g dm
Thus, the specific rotation of D is 11.60° mL/g dm