4000 seconds
Explanation:
speed = distance / time
0.0004m/s = 1.6m / time
Subject time
time = 1.6 / 0.0004
time = 4000 seconds.
Hope this helps. Mark as brainliest if possible. tks
Answer:
Part(a): The frequency is
.
Part(b): The speed of the wave is
.
Explanation:
Given:
The distance between the crests of the wave,
.
The time required for the wave to laps against the pier, 
The distance between any two crests of a wave is known as the wavelength of the wave. So the wavelength of the wave is
.
Also, the time required for the wave for each laps is the time period of oscillation and it is given by
.
Part(a):
The relation between the frequency and time period is given by

Substituting the value of
in equation (1), we have

Part(b):
The relation between the velocity of a wave to its frequency is given by

Substituting the value of
and
in equation (2), we have

Answer:
The correct option is C
Explanation:
According to third equation of motion, v
2
=u
2
+2ax
Here, u=0 m/s
a=−g and x=−h
Negative sign indicates downward direction. Displacement and acceleration both are downwards.
So,v=±
2(−g)(−h)
We take minus sign because it is downwards.
v=−
2gh
After bouncing. velocity becomes 80% of v, i.e.,
v
′
=+0.8
2gh
(positive sign because the direction of ball has reversed after bouncing and is upwards.
Applying third equation of motion again, for u=v
′
, v=0 and a=−g
v
2
=u
2
+2×a×x
Thus,
0=0.64(2gh)+2(−g)x
or
x=0.64h
Answer:
Answer:
118.4 N
Explanation:
weight of chair, mg = 95 N
Push, F = 39 N
Ф = 37 ° below x axis
Let n be the normal force.
So, by using the diagram and resolve the components of Force F.
n = mg + F SinФ
n = 95 + 39 Sin 37°
n = 95 + 39 x 0.6
n = 118.4 N
Explanation:
ANSWER:
0.0562 J
STEP-BY-STEP EXPLANATION:
Angular momentum is expressed in terms of moment of inertia and angular velocity. This is expressed as follows:

Here, I is the angular momentum and ω is the angular velocity.
Angular momentum is mass time the square of the radius of the object. Moment of inertia for a uniform disk is given as,

Here, m is the mass of the disk and r is the radius of the disk.
Replacing:

Convert the units of angular velocity into rad/s.

We replace each data to calculate the angular momentum:

The angular momentum of the uniform disk is 0.0562 J