<h2>
Answer:</h2><h3><u>QUESTION①)</u></h3>
<em>✔ First step : calculate the kinetic energy that this car requires to reach 95 km/h</em>
95/ 3,6 ≈ 26,4 m/s
<em>Ec = ½ m x V² </em>
With Ec in J; m in kg; and V in m/s
- Ec = ½ 1750 x 26,4²
- Ec ≈ 610 000 J
<em>✔ Knowing that the car has a p power of 215,000 W, so :
</em>
T = E/P
- T = 610 000/215 000
- T ≈ 2.8 s
<h3>
The car takes 2.8 s to reach 95 km/h </h3>
<h3><u>QUESTION②)</u></h3>
N = 2,8/6,5 x 100 = 43.07
<h3>The car efficiency is 43 % </h3>
by the concept of momentum conservation we can say
if net force on a system of mass is ZERO then its momentum will remain conserved
Here a ball is projected upwards so if we take Ball + Earth as a system then total momentum of the system will remain conserved
Initially when ball is on the surface of earth the system has zero momentum and hence we can say after throwing the ball momentum of earth + ball must be zero
now using same equation we can say


given that



from above equation velocity of earth will be



so above will be the recoil speed of earth
The major transition occurred is that the universe became transparent to light for the first time. This is the consequence that might happen because of the changes in the universe at this time. The reaction between the elements that are present in the space can affect the present universe.
The kilogram is the Standard International System of Units unit of mass. It is defined as the mass of a particular international prototype made of platinum-iridium and kept at the International Bureau of Weights and Measures.
Explanation:
Distance = Total path length = 35m + 35m = 70m
Displacement = Final - Initial position = 0m