I say that the answere would be B
Answer:
If the canoe heads upstream the speed is zero. And directly across the river is 8.48 [km/h] towards southeast
Explanation:
When the canoe moves upstream, it is moving in the opposite direction of the normal river current. Since the velocities are vector (magnitude and direction) we can sum each vector:
Vr = velocity of the river = 6[km/h}
Vc = velocity of the canoe = -6 [km/h]
We take the direction of the river as positive, therefore other velocity in the opposite direction will be negative.
Vt = Vr + Vc = 6 - 6 = 0 [km/h]
For the second question, we need to make a sketch of the canoe and we are watching this movement at a high elevation. So let's say that the canoe is located in point 0 where it is located one of the river's borders.
So we are having one movement to the right (x-direction). And the movement of the river to the south ( - y-direction).
Since the velocities are vector we can sum each vector, so using the Pythagoras theorem we have:
![Vt = \sqrt{(6)^{2} +(-6)^{2} } \\Vt=8.48[km/h]](https://tex.z-dn.net/?f=Vt%20%3D%20%5Csqrt%7B%286%29%5E%7B2%7D%20%2B%28-6%29%5E%7B2%7D%20%7D%20%5C%5CVt%3D8.48%5Bkm%2Fh%5D)
Answer:
0.000234 seconds
Explanation:
Since the row is 0.15m, its radius of rotation must be 0.15 / 2 = 0.075 m
We can start by calculating the angular speed of the rod:
Since one revolution equals to 2π rad. The speed in revolution per second must be
26800 / 2π = 4265 revolution/s
The number of seconds per revolution, or period, is the inverse:
1/4265 = 0.000234 seconds
The impulse imparted to the shells equals the change in the momentum:
Fav*(Delta t)= Delta m*v.
The mass change is
Delta m= n*m= (89.9shells)*(88.7g)=7.97Kg
So the average force is
F=((v)*(Delta m))/t= ((929)*(7.97))/4.84=1529.78 N
Since the velocity of the shells is much greater than the velocity of the helicopter, there is no need to use relative velocity.
The role of friction is of great importance when creating safety ramps and escalators because with the help of friction things move.
<h3>Why is it important to move objects slowly on ramps and escalator?</h3>
It is important to move objects slowly on ramps and escalator because the ramps and escalator moves object in the opposite direction of gravity. If we did not move objects slowly, then the objects or a person get damaged.
So we can conclude that the role of friction is of great importance when creating safety ramps and escalators because with the help of friction things move.
Learn more about friction here: brainly.com/question/24338873#SPJ1