There are 3 iron atoms per molecule of iron oxide.
The problem is solved and the questions are answered below.
Explanation:
a. To calculate the speed of the 0.66 kg ball just before the collision
V₀ + K₀ = V₁ + K₁
= mgh₀ = 1/2 mv₁²
where, h= r - r cosθ
V = 
V = 2.42 m/s
b. Calculate the speed of the 0.22 kg ball immediately after the collision
y = y₀ + Vy₀t - 1/2 gt²
0 = 1.2 - 1/2 gt²
t = 0.495 s
x = x₀ + Vx₀t
1.4 = 0 + vx₀ (0.495)
Vx₀ = 2.83 m/s
C. To Calculate the speed of the 0.66 kg ball immediately after the collision
m₁ v₁ = m₁ v₃ + m₂ v₄
(0.66)(2.42) = (0.66) v₃ + (0.22)(2.83)
V₃ = 1.48 m/s
D. To Indicate the direction of motion of the 0.66 kg ball immediately after the collision is to the right.
E. To Calculate the height to which the 0.66 kg ball rises after the collision
V₀ + k₀ = V₁ + k₁
1/2 mv₀² = mgh₁
h₁ = v₀²/2 g
= 0.112 m
F. Based on your data, No the collision is not elastic.
Δk = 1/2 m₁v₃² =1/2 m₂v₄² - 1/2 m₁v₁²
= 1/2 (0.66)(1.48)² + 1/2 (0.22)(2.83)² - 1/2 (0.66)(2.42)²
= - 0.329 J
Hence, kinetic energy is not conserved.
Answer:
This material exhibits paramagnetism.
Explanation:
A paramagnetic material has these features: It doesn’t have any magnetic properties when placed in an external magnetic field, it gains and then loses the magnetic property as the external field is removed.
Such materials have magnetic moments oriented in random directions, thus making the net magnetic moment, zero. But when placed in an external field, they do possess a net magnetic moment. When the magnetic field is removed, they lose the magnetic property.
Thus, the material which produces no initial magnetic field when placed in a uniform magnetic field produces an additional internal magnetic field parallel to the original field. Also, it loses the magnetic properties as soon as the external magnetic field is removed. Then, the magnetism the material exhibits is paramagnetic.
B because it will not be any thing else