Answer:
trying to push a rock that never moves
Explanation:
Answer:
v = 79.2 m/s
Solution:
As per the question:
Mass of the object, m = 250 g = 0.250 kg
Angle, 
Coefficient of kinetic friction, 
Mass attached to the string, m = 0.200 kg
Distance, d = 30 cm = 0.03 m
Now,
The tension in the string is given by:
(1)
Also
T = m(g + a)
Thus eqn (1) can be written as:





Now, the speed is given by the third eqn of motion with initial velocity being zero:

where
u = initial velocity = 0
Thus


Answer:
(a) k = 30.33 N/m
(b) a = 9.8 m/s²
Explanation:
First, we need to find the force acting on the bungee jumper. Since, this is a free fall motion. Therefore, the force must be equal to the weight of jumper:
F = W = mg
F = (65 kg)(9.8 m/s²)
F = 637 N
(a)
Now applying Hooke's Law:
F = k Δx
where,
k = spring constant = ?
Δx = change in length of bungee cord = 33 m - 12 m = 21 m
Therefore,
637 N = k(21 m)
k = 637 N/21 m
<u>k = 30.33 N/m</u>
<u></u>
(b)
Since, this is free fall motion. Thus, the maximum acceleration will be the acceleration due to gravity.
a = g
<u>a = 9.8 m/s²</u>
Explanation:
Take a measuring cylinder and fill it with a certain amount of water. Measure this amount of water.
Place the paper clip in the filled measuring cylinder. You will notice that the water level has gone up. When we place the paper clip in the cylinder the volume of the paper clip gets added to the volume that was present in the cylinder.
The volume of the paper clip will be the final volume of water with the paper clip - The initial volume of water without the paper clip.
Any irregularly shaped object's volume can be determined by this method.