The time after being ejected is the boulder moving at a speed 20.7 m/s upward is 2.0204 s.
<h3>What is the time after being ejected is the boulder moving at a speed 20.7 m/s upward?</h3>
The motion of the boulder is a uniformly accelerated motion, with constant acceleration
a = g = -9.8 
downward (acceleration due to gravity).
By using Suvat equation:
v = u + at
where: v is the velocity at time t
u = 40.0 m/s is the initial velocity
a = g = -9.8
is the acceleration
To find the time t at which the velocity is v = 20.7 m/s
Therefore,

The time after being ejected is the boulder moving at a speed 20.7 m/s upward is 2.0204 s.
The complete question is:
A large boulder is ejected vertically upward from a volcano with an initial speed of 40.0 m/s. Ignore air resistance. At what time after being ejected is the boulder moving at 20.7 m/s upward?
To learn more about uniformly accelerated motion refer to:
brainly.com/question/14669575
#SPJ4
Static electricity travels to the door knob because of the friction caused by the feet on the carpet. the friction traveled through the person, to their hand, and to the door knob because it is the best conductor.
Answer:
A. False, frequency can increase or decrease wavelength.
For example: a high frequency would mean there are shorter wavelengths that occur in a period. Meanwhile, a low frequency would indicate that the wavelengths are longer and in longer periods.
Answer:
A
Explanation:
the object's mass determines the speed of the object and its kinetic energy