The answer is parallel
If the <span>circuits in a car</span> were series, they would go out at the same time.
I hope this helps! :3
Mass of yellow train, my = 100 kg
Initial Velocity of yellow train, = 8 m/s
mass of orange train = 200 kg
Initial Velocity of orange train = -1 m/s (since it moves opposite direction to the yellow train, we will put negative to show the opposite direction)
To calculate the initial momentum of both trains, we will use the principle of conservation of momentum which
The sum of initial momentum = the sum of final momentum
Since the question only wants the sum of initial momentum,
(100)(8) + (200)(-1) = 600 m/s
Answer:

Explanation:
It is given that,
A planar electromagnetic wave is propagating in the +x direction.The electric field at a certain point is, E = 0.082 V/m
We need to find the magnetic vector of the wave at the point P at that instant.
The relation between electric field and magnetic field is given by :

c is speed of light
B is magnetic field

So, the magnetic vector at point P at that instant is
.
Just do energy spent divided by time to get your answer :). With this we can say a human might be able to!
Answer:
T = 74°C
Explanation:
Given Mw = mass of water = 330g, Ma = mass of aluminium = 840g
Cw = 4.2gJ/g°C = specific heat capacity of water and Ca = 0.9J/g°C = specific heat capacity of aluminium
Initial temperature of water = 100°C.
Initial temperature of aluminium = 29°C
When the boiling water is poured into the aluminum pan, heat is exchanged and after a short time the water and aluminum pan both come to thermal equilibrium at a common temperature T.
Heat lost by water equal to the heat gained by aluminium pan.
Mw × Cw×(100 –T) = Ma × Ca × (T–29)
330×4.2×(100– T) = 890×0.9×(T–29)
1386(100 – T) = 801(T –29)
1386/801(100 – T) = T – 29
1.73(100 – T) = T – 29
173 –1.73T = T –29
173+29 = T + 1.73T
202 = 2.73T
T = 202/2.73
T = 74°C