Answer:
1, 2, 3, and 6 are the answers.
Explanation:
sorry for the late response
Yes because if not people wouldn't understand how did you calculate electric field strength.
The speed of tsunami is a.0.32 km.
Steps involved :
The equation s = 356d models the maximum speed that a tsunami can move at. It reads as follows: s = 200 km/h d =?
Let's now change s to s in the equation to determine d: s = 356√d 200 = 356√d √d = 200 ÷ 356 √d = 0.562 Let's square the equation now by squaring both sides: (√d)² = (0.562) ² d = (0.562)² = 0.316 ≈ 0.32
As a result, 0.32 km is roughly the depth (d) of water for a tsunami moving at 200 km/h.
To learn more about tsunami refer : brainly.com/question/11687903
#SPJ4
Answer:
The rate of change of the distance between the helicopter and yourself (in ft/s) after 5 s is
ft/ sec
Explanation:
Given:
h(t) = 25 ft/sec
x(t) = 10 ft/ sec
h(5) = 25 ft/sec . 5 = 125 ft
x(5) = 10 ft/sec . 5 = 50 ft
Now we can calculate the distance between the person and the helicopter by using the Pythagorean theorem

Lets find the derivative of distance with respect to time

Substituting the values of h(t) and x(t) and simplifying we get,



=
=
ft / sec
Answer:
angular range is ( 0.681 rad , 0.35 rad )
Explanation:
given data
wavelength λ = 380 nm = 380 ×
m
wavelength λ = 700 nm = 700 ×
m
to find out
angular range of the first-order
solution
we will apply here slit experiment equation that is
d sinθ = m λ ...........1
here m is 1 for single slit and d is = 
so put here value in equation 1 for 380 nm
we get
d sinθ = m λ
sinθ = 1 × 380 × 
θ = 0.35 rad
and for 700 nm
we get
d sinθ = m λ
sinθ = 1 × 700 × 
θ = 0.681 rad
so angular range is ( 0.681 rad , 0.35 rad )