Isotopes refer to different atoms of the same element (i.e. same number of protons) that differ in the number of neutrons they have (giving them different atomic weights). Atomic weight is the sum of protons and neutrons (each contributes 1 atomic mass unit).
Carbon has 6 protons by definition. If you have a carbon-13 atom (the 13 referring to its mass), the atom has 13 - 6 = 7 neutrons. Since it's neutral, protons = electrons, so there are also 6 electrons.
Sulfur has 16 protons by definition. If you have a sulfur-32 atom, the atom has 32 - 16 = 16 neutrons. Since it's neutral, protons = electrons, so there are also 16 electrons.
Answer:
Given: V = 220V, Pmin = 360W, Pmax = 840W
For minimum heating case:
We know that
Pmin = VI
360 = 220 X I
I = 1.63 amp
R = V/I
R = 220/1.63
R = 134.96ohms
For maximum heating case:
We know that
Pmax = VI
840 = 220 X I
I = 3.81 amp
R = V/I
R = 220/3.81
R = 57.74 ohms
Answer:
current I1 = current I2
Explanation:
since the wire is made up of the same material, from Kirchoff's current law sum of currents entering a particular node or segment of wire is equals to the sum of currents leaving that particular node or segment of wire
1) The correct answer is
<span>C) The particles are not able to move out of their positions relative to one another, but do have small vibrational movements.
In solids, in fact, particles are bound together so they cannot move freely. However, they can move around their fixed position with small vibrational movements, whose intensity depends on the temperature of the substance (the higher the temperature, the more intense the vibrations). For this reason, we say that matter moves also in solid state.
2) The correct answer is
</span><span>A) increase the concentration of both solutions
In fact, when we increase the concentration of both solutions, we increase the number of particles that react in both solutions; as a result, the speed of the reaction will increase.
3) The correct answer is
</span><span>C) gas → liquid → solid
In gases, in fact, particles are basically free to move, so the intermolecular forces of attraction are almost negligible. In liquids, particles are still able to move, however the intermolecular forces of attraction are stronger than in gases. Finally, in solids, particles are bound together, so they are not free to move and the intermolecular forces of attraction are very strong. </span>
The answer to your question is A.
45N and 91W