<u>Answer:</u> The mass of sodium chloride solution present is 0.256 grams.
<u>Explanation:</u>
We are given:
39.0 % of sodium in sodium chloride solution
This means that 39.0 grams of sodium is present in 100 grams of sodium chloride solution
Mass of sodium given = 100 mg = 0.1 g (Conversion factor: 1 g = 1000 mg)
Applying unitary method:
If 39 grams of sodium metal is present in 100 grams of sodium chloride solution
So, if 0.1 grams of sodium metal will be present in =
of sodium chloride solution.
Hence, the mass of sodium chloride solution present is 0.256 grams.
Answer:
0.144M
Explanation:
First, let us write a balanced equation for the reaction. This is illustrated below:
HNO3 + KOH —> KNO3 + H20
From the equation,
nA = 1
nB = 1
From the question given, we obtained the following:
Ma =?
Va = 30.00mL
Mb = 0.1000M
Vb = 43.13 mL
MaVa / MbVb = nA/nB
Ma x 30 / 0.1 x 43.13 = 1
Cross multiply to express in linear form
Ma x 30 = 0.1 x 43.13
Divide both side by 30
Ma = (0.1 x 43.13) /30 = 0.144M
The molarity of the nitric acid is 0.144M
Answer:
Pb2+(aq) + 2Cl–(aq) ----> PbCl2(s)
Explanation:
The net ionic equation shows the main reaction that takes place in a system. Hence, a net ionic equation focusses only on those species that actually participate in the reaction.
For the reaction between Pb(NO3)2 and NH4Cl , the net ionic equation is;
Pb^+(aq) + 2Cl^-(aq) ---> PbCl2(s)
Opposites attract, like for example magnets, one is positive and the other is negatively charged, they will attract
Answer:
B
Explanation:
Pressure is directly proportional to temperature