Answer:
if you did it would probably make it bigger...
Explanation:
:)
The electron configuration filling patterns of some elements in group 6b(6) and group 1b(11) reflect the increasing stability of half-filled and completely filled sublevels.
<h2>
What is electronic configuration?</h2>
The distribution of electrons in an element's atomic orbitals is described by the element's electron configuration. Atomic subshells that contain electrons are placed in a series, and the number of electrons that each one of them holds is indicated in superscript for all atomic electron configurations. For instance, sodium's electron configuration is 1s22s22p63s1.
Almost all of the elements write their electronic configurations in the same style. When the energies of two subshells differ, an electron from the lower energy subshell occasionally goes to the higher energy subshell.
This is due to two factors:
Symmetrical distribution: As is well known, stability is a result of symmetry. Because of the symmetrical distribution of electrons, orbitals where the sub-shell is exactly half-full or totally filled are more stable.
Energy exchange: The electrons in degenerate orbitals have a parallel spin and are prone to shifting positions. The energy released during this process is simply referred to as exchange energy. The greatest number of exchanges occurs when the orbitals are half- or fully-filled. Its stability is therefore at its highest.
To know more about electronic configuration, go to URL
brainly.com/question/26084288
#SPJ4
AgNO₃+NaCl⇒AgCl+NaNO₃
<h3>Further explanation</h3>
Double-Replacement reactions. Happens if there is an ion exchange between two ion compounds in the reactant to form two new ion compounds in the product
Reaction
AB + CD⇒AD + CB
So for the option :
1. synthesis/combination reaction
2. decomposition reaction
3. double replacement reaction
4. single replacement reaction
<u>Given information:</u>
Mass of NaCl (m) = 87.75 g
Volume of solution (V) = 500 ml = 0.5 L
Molar mass of NaCl (M) = 58.44 g/mol
<u>To determine:</u>
The molarity of NaCl solution
<u>Explanation:</u>
Molarity is defined as the number of moles of solute(n) dissolved per liter of solution (V)
i.e. M = moles of solute/liters of solution = n/V
Moles of solute (n) = mass of solute (m)/molar mass (M)
moles of NaCl = 87.75 g/58.55 g.mol-1 = 1.499 moles
Therefore,
Molarity of NaCl = 1.499 moles/0.5 L = 2.998 moles/lit ≅ 3 M
<u>Ans: (D)</u>
The mass of oxygen and hydrogen must be equal to the mass of the substance they create the water. So if the hydrogen is 2.8 g the oxygen must account for the rest of the mass. Basically just subtract 25.4-2.8=mass of oxygen