<u>Answer:</u> The correct answer is Option D.
<u>Explanation:</u>
Enthalpy change is defined as the difference in enthalpies of all the product and the reactants each multiplied with their respective number of moles. It is represented as 
The equation used to calculate enthalpy change is of a reaction is:
![\Delta H^o_{rxn}=\sum [n\times \Delta H^o_f_{(product)}]-\sum [n\times \Delta H^o_f_{(reactant)}]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28product%29%7D%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28reactant%29%7D%5D)
Hence, the correct answer is Option D.
Initial concentration of magnesium nitrate M1 = 2.13 M
Initial volume of magnesium nitrate, MgNO3 V1 = 1.24 L
Final concentration of MgNO3, M2 = 1.60 M
Let the final volume of MgNO3 upon dilution be V2
Formula to use:
M1*V1 = M2*V2
V2 = M1*V1/M2
= 2.13 M * 1.24 L/1.60 M = 1.65 L
Thus, the final volume of magnesium nitrate solution upon dilution is 1.65 L
The angular momentum of an electron in the third Bohr orbit of a hydrogen atom is given by mvr=3h÷2π
<h3>What is momentum?</h3>
Momentum is defined as the amount of motion occurring in something that is moving, or the force that drives something forward to keep it moving.
Bohr never assumed stable electronic orbits with the electronic angular momentum quantized as
l=mvr = 
Quantization of angular momentum means that the radius of the orbit and the energy will be quantized as well.
Bohr assumed that the discrete lines seen in the spectrum of the hydrogen atom were due to transitions of an electron from one allowed orbit/energy to another.
Learn more about momentum here:
https://brainly.in/question/38837394
#SPJ1