The generalized rate expression may be written as:
r = k[A]ᵃ[B]ᵇ
We may determine the order with respect to B by observing the change in rate when the concentration of B is changed. This can be done by comparing the first two runs of the experiment, where the concentration of A is constant but the concentration of B is doubled. Upon doubling the concentration of B, we see that the rate also doubles. Therefore, the order with respect to concentration of B is 1.
The same can be done to determine the concentration with respect to A. The rate increases 4 times between the second and third trial in which the concentration of B is constant, but that of A is doubled. We find that the order with respect to is 2. The rate expression is:
r = k[A]²[B]
The number of mole of lithium, Li needed for the reaction is 3.2 moles (Option D)
<h3>Balanced equation </h3>
4Li + N₂(g) → 2Li₂N
From the balanced equation above,
2 moles of Li₂N were obtained from 4 moles of Li
<h3>How to determine the mole of lithium needed </h3>
From the balanced equation above,
2 moles of Li₂N were obtained from 4 moles of Li
Therefore,
1.6 moles of Li₂N will be obtained from = (1.6 × 4) / 2 = 3.2 moles of Li
Thus, 3.2 moles of Li are needed for the reaction
Learn more about stoichiometry:
brainly.com/question/14735801
If you want you can repost this question with a picture but I need to see it in order to help you , or you can read the picture I added for you
E=hv
h = 6.626 × 10^-34 joule·s
v=frequency
i got 4.7636x10^-30 J
I think it is A as solid atoms are close and gases are far away