Mass=density x volume, i.e. 1.03 x 85.32 = 87.88 g
Answer:
∆H is negative
∆S is negative
Explanation:
The condensation of CS2 implies a phase change from gaseous state to liquid state. The energy of the gaseous particles is greater than that of the liquid particles hence energy is given out when a substance changes from gaseous state to liquid state hence the process is exothermic and ∆H is negative.
Changing from gaseous state to liquid states leads to a decrease in entropy hence ∆S is negative. Liquid particles are more orderly than particles of a gas.
Oceans, they are larger than ponds hence they possess wider exposure with more number of surface molecules.
<h3>Answer:</h3>
18.75 grams
<h3>Explanation:</h3>
- Half-life refers to the time taken by a radioactive material to decay by half of the original mass.
- In this case, the half-life of element X is 10 years, which means it takes 10 years for a given mass of the element to decay by half of its original mass.
- To calculate the amount that remained after decay we use;
Remaining mass = Original mass × (1/2)^n, where n is the number of half-lives
Number of half-lives = Time for the decay ÷ Half-life
= 40 years ÷ 10 years
= 4
Therefore;
Remaining mass = 300 g × (1/2)⁴
= 300 g × 1/16
= 18.75 g
Hence, a mass of 300 g of an element X decays to 18.75 g after 40 years.