Answer:
2.17 Mpa
Explanation:
The location of neutral axis from the top will be

Moment of inertia from neutral axis will be given by 
Therefore, moment of inertia will be
![\frac {240\times 25^{3}}{12}+(240\times 25)\times (56.25-25/2)^{2}+2\times [\frac {20\times 150^{3}}{12}+(20\times 150)\times ((25+150/2)-56.25)^{2}]=34.5313\times 10^{6} mm^{4}}](https://tex.z-dn.net/?f=%5Cfrac%20%7B240%5Ctimes%2025%5E%7B3%7D%7D%7B12%7D%2B%28240%5Ctimes%2025%29%5Ctimes%20%2856.25-25%2F2%29%5E%7B2%7D%2B2%5Ctimes%20%5B%5Cfrac%20%7B20%5Ctimes%20150%5E%7B3%7D%7D%7B12%7D%2B%2820%5Ctimes%20150%29%5Ctimes%20%28%2825%2B150%2F2%29-56.25%29%5E%7B2%7D%5D%3D34.5313%5Ctimes%2010%5E%7B6%7D%20mm%5E%7B4%7D%7D)
Bending stress at top= 
Bending stress at bottom=
Mpa
Comparing the two stresses, the maximum stress occurs at the bottom and is 2.17 Mpa
A single polarizer will stop 50% of the incoming light.
Answer:
The acceleration of a point on the wheel is 11.43 m/s² acting radially inward.
Explanation:
The centripetal acceleration acts on a body when it is performing a circular motion.
Here, a point on the bicycle is performing circular motion as the rotation of the wheel produces a circular motion.
The centripetal acceleration of a point moving with a velocity
and at a distance of
from the axis of rotation is given as:

Here, 
∴ 
Therefore, the acceleration of a point on the wheel is 11.43 m/s² acting radially inward.
It's called "utter disregard for the safety and welfare
of the people standing at the bottom of the hill".
Answer:
<h2>441 J</h2>
Explanation:
The potential energy of a body can be found by using the formula
PE = mgh
where
m is the mass
h is the height
g is the acceleration due to gravity which is 9.8 m/s²
From the question we have
PE = 30 × 9.8 × 1.5
We have the final answer as
<h3>441 J</h3>
Hope this helps you