Answer:
The answer to your question is:
1.- CO
2.- 0.414 moles of CO2
Explanation:
Data
2CO + O2 ⇒ 2CO2
CO = 0.414 moles
O2 = 0.418
Process
theoretical ratio CO/O2 = 2/1 = 1
experimental ratio CO/O2 = 0.414/0.418 = 0.99
Then the limiting reactant is CO
2.-
2 moles of CO --------------- 2 moles of CO2
0.414 moles of CO --------- x
x = (0.414 x 2) / 2
x = 0.414 moles of CO2
As we have the balanced reaction equation is:
N2O4 (g) ↔ 2NO2(g)
from this balanced equation, we can get the equilibrium constant expression
KC = [NO2]^2[N2O4]^1
from this expression, we can see that [NO2 ] is with 2 exponent of the stoichiometric and we can see that from the balanced equation as NO2
is 2NO2 in the balanced equation.
and [N2O4] is with 1 exponent of the stoichiometric and we can see that from the balanced equation as N2O4 is 1 N2O4 in the balanced equation.
∴ the correct exponent for N2O4 in the equilibrium constant expression is 1
Answer:
Part A:
"360 grams of NaCl can be dissolved in 1 L water. So, 2000 grams sugar can be dissolved in 1 L water then we can say that the solubility of salt is lesser in water as to sugar and both heightened by increasing the temperature. If we make a batch of 800 L we can add sugar, 1600 kg at 25 0c. We can add salt is 288 kg at 25 0c and the ingredient tomato is having low solubility."
Read more at Answer.Ya.Guru – https://answer.ya.guru/questions/8061-describe-the-sequence-of-adding-ingredients-to-make-the-recipe.html
Part B:
'Manufacturers can generate new value minimize cost and increase operational stability by focusing on 4 broad areas; Management, Supply Circle, Product Design, and Value Recovery.'
Read more at Answer.Ya.Guru – https://answer.ya.guru/questions/2807911-what-changes-could-be-made-to-optimize-the-manufacturing-process.html
Diffusion, facilitated diffusion, filtration, and osmosis