Metals don't form covalent bonds because of the low ionization energes of the metal atoms. It is easier for them to release electrons rather than sharing it. But this is not always the case, there are some metals that can form covalent bonds.
Answer:
Prokaryotic is the answer!
Explanation:
I know this because, the nucleolus is absent in the image.
PLZ MARK AS BRAINLIEST! HOPE THIS HELPS! :)
ps: i have the same profile photo lol, love it!
The answer is D: 400N
your welcome
The atomic number (Z) of the 3 elements F, Ne, and Na, are 9, 10, and 11.
Explanation:
Now Z refers to the number of protons in the element's nucleus, and protons are POSITIVELY charged particles. So a fluoride ion, F−, has 10 electrons rather than 9 (why?), a neutral neon atom has 10 electrons, and a sodium ion, Na+, also has 10 electrons (why?).
So the 3 species are ISOELECTRONIC; they possess the same number of electrons.
You should look at the Periodic Table to confirm the electron number. Elements are (usually) electrically neutral (sometimes they can be ionic if they have lost or gained electrons). If there are 10 positively charged protons in the nucleus, there are NECESSARILY 10 electrons associated with the NEUTRAL atom. I don't know WHY I am capitalizing certain WORDS.
You might ask why sodium will form a positive ion, Na+, whereas F forms a negative ion, F−. This again is a Periodic phenomenon, and explicable on the basis of the electronic structure that the Table formalizes.
Neutral metals tend to be electron-rich species, which have 1 or more electrons in a valence shell remote from the nuclear charge. On the other hand, neutral non-metals have valence electrons in incomplete shells, that do not effectively shield the nuclear charge. The demonstrable consequence is that metals lose electrons to form positive ions, whereas non-metals gain electrons to form negative ions.
Answer:
1s² 2s²2p³
Explanation:
If the atom has seven electrons, it is Element 7 (nitrogen).
In the Periodic Table, you count the electrons in all the subshells up to
No. 7.
In the first Period, you have filled the 1s level (2 electrons).
In the second Period, you have filled the 2s subshell (2 electrons) and put three electrons in the 2p subshell.
Thus, the electron configuration is
1s² 2s²2p³
Note how the superscripts tell you the number of electrons in each subshell: <em>2 + 2 + 3 = 7</em>.