Answer:
[KCl] = 1.2 M
Explanation:
We need to complete the reaction:
2KCl(aq) + Pb(NO₃)₂(aq) → 2KNO₃(aq) + PbCl₂(s)↓
By stoichiomety we know that 1 mol of chloride needs 1 mol of nitrate to react:
Let's find out the moles of nitrate, we have:
Molarity = mol/volume(L)
We convert the volume → 30 mL . 1L/1000mL = 0.030L
Molarity . volume(L) = moles → 0.400 M . 0.030L = 0.012 moles
Therefore, we can make a rule of three.
1 mol of nitrate reacts with 2 moles of chloride
Then, 0.012 moles of nitrate must react with (0.012 . 2) / 1 = 0.024 moles of KCl
We convert the volume from mL to L → 20 mL . 1L /1000mL = 0.020L
Molarity = mol /volume(L) → 0.024 mol /0.020L = 1.2 M
Answer:
50000 dollars or 5 e5
Explanation:
Mr. Garibay has
dollars in his bank.
Scientific notation represents the data in the format of expanded number or with e character.
For instance, 5.0 * 10^4 dollars = 50000 dollars or 5 e5
Answer:
A car stopped at the top of a hill
Explanation:
Potential energy is the energy that is stored in an object due to its position relative to some zero position.
therefore, the answer is the first option
=> A car stopped at the top of a hill
hope this helps and is right :)
The answer to this question would be D. Hydrophilic.
The word hydrophilic mean attracted by water. That means the molecule has a force to attract water molecule, thus be able to dissolve in water. The polarity of the molecule would determine whether a molecule hydrophilic or not.
Its opposite would be hydrophobic which the molecule can't dissolve in water. One example of this would be oil or fat. That is why sometimes it is called lipophilic too.
Answer:
Explanation:
In a chemical formula, the oxidation state of transition metals can be determined by establishing the relationships between the electrons gained and that which is lost by an atom.
We know that for compounds to be formed, atoms would either lose, gain or share electrons between one another.
The oxidation state is usually expressed using the oxidation number and it is a formal charge assigned to an atom which is present in a molecule or ion.
To ascertain the oxidation state, we have to comply with some rules:
- The algebraic sum of all oxidation numbers of an atom in a neutral compound is zero.
- The algebraic sum of all the oxidation numbers of all atoms in an ion containing more than one kind of atom is equal to the charge on the ion.
For example, let us find the oxidation state of Cr in Cr₂O₇²⁻
This would be: 2x + 7(-2) = -2
x = +6
We see that the oxidation number of Cr, a transition metal in the given ion is +6.