Answer:
decreases, increases, minimum (zero)
Explanation:
Kinetic energy of a body is directly proportional to the square of velocity of the body and the potential energy is directly proportional to the height of the body at which it is placed.
The formula for the kinetic energy is
K = 1/2 m v^2
The formula for the potential energy is
U = m g h
As the body goes up its kinetic energy decreases as the velocity of the object decreases.
As the body goes up the potential energy increases as the height increases.
At the top most point, the velocity of teh object is zero, so the kinetic energy at the top is zero.
Answer:
This is an inelastic collision. This means, unfortunately, that KE cannot save you, at least in the problem's current form.
Let's see what conservation of momentum in both directions does ya:
Conservation in the x direction:
Only 1 object here has a momentum in the x direction initally.
m1v1i + 0 = (m1 + m2)(vx)
3.09(5.10) = (3.09 + 2.52)Vx
Vx = 2.81 m/s
Explanation:
Conservation in the y direction:
Again, only 1 object here has initial velocity in the y:
0 + m2v2i = (m1 +m2)Vy
(2.52)(-3.36) = (2.52 + 3.09)Vy
Vy = -1.51 m/s
++++++++++++++++++++
Now that you have Vx and Vy of the composite object, you can find the final velocity by doing Vf = √Vx^2 + Vy^2)
Vf = √(2.81)^2 + (-1.51)^2
Vf = 3.19 m/s
mass number is defined as sum of number of protons and neutrons
so here for Isotope A
Isotope A contains 56 protons and 80 neutrons.
Mass number will be given as

For Isotope B
Isotope B contains 55 protons and 81 neutrons.

For Isotope C
Isotope C contains 57 protons and 80 neutrons.

For Isotope D
Isotope D contains 56 protons and 74 neutrons.

<em>So here Isotope A and Isotope B has same mass number</em>