The speed of the pin after the elastic collision is 9 m/s east.
<h3>
Final speed of the pin</h3>
The final speed of the pin is calculated by applying the principle of conservation of linear momentum as follows;
m1u1 + mu2 = m1v1 + m2v2
where;
- m is the mass of the objects
- u is the initial speed of the objects
- v is the final speed of the objects
4(1.4) + 0.4(0) = 4(0.5) + 0.4v2
5.6 = 2 + 0.4v2
5.6 - 2 = 0.4v2
3.6 = 0.4v2
v2 = 3.6/0.4
v2 = 9 m/s
Thus, The speed of the pin after the elastic collision is 9 m/s east.
Learn more about linear momentum here: brainly.com/question/7538238
#SPJ1
The other person who answered this is wrong btw
Answer:
39.7 m
Explanation:
First, we conside only the last second of fall of the body. We can apply the following suvat equation:

where, taking downward as positive direction:
s = 23 m is the displacement of the body
t = 1 s is the time interval considered
is the acceleration
u is the velocity of the body at the beginning of that second
Solving for u, we find:

Now we can call this velocity that we found v,
v = 18 m/s
And we can now consider the first part of the fall, where we can apply the following suvat equation:

where
v = 18 m/s
u = 0 (the body falls from rest)
s' is the displacement of the body before the last second
Solving for s',

Therefore, the total heigth of the building is the sum of s and s':
h = s + s' = 23 m + 16.7 m = 39.7 m
Answer:
n = 1.4
Explanation:
Given,
R1 = 18 cm, R2 = -18 cm
From lens makers formula
1/f = (n - 1)(1/18 + 1/18) = (n-1)/9
f = 9/(n-1)
Power, P = 1/f ( in m) = (n-1)/0.09
Now, this lens is in with conjunction with a concave mirror which then can be thought of as to be in conjunction with another thin lens
Power of concave mirror = P' = 1/f ( in m) = 2/R = 2/0.18 = 1/0.09
Net power of the combination = 2P + P' = 2(n-1)/0.09 + 1/0.09 = 1/0.05
n = 1.4
Answer:
Explanation:
Given
mass of water molecule 
mass of person 
It is given that body is mostly made up of water
suppose n water molecules constitutes 62 kg
so 

