Which equation is not equvilant It is c
Answer:
<em>Correct choices: a) 5:12 and c) 7 to 12</em>
Step-by-step explanation:
The ratio of red beads to pink beads is 5:7. This means that for every 5 red beads there are 7 pink beads.
It also means that for every 12 beads there are 5 red beads and 7 pink beads.
Therefore, there are two part-to-whole ratios:
5:12 red beans to total beads, and
7:12 pink beans to total beads
Correct choices: a) 5:12 and c) 7 to 12
Answer:
x = 
y = 
Step-by-step explanation:
![2x-3y=5\\5x=4y=14\\\\\left[\begin{array}{cc}2&-3\\5&-4\\\end{array}\right] \left[\begin{array}{c}x\\y\\\end{array}\right] =\left[\begin{array}{c}5\\14\\\end{array}\right]](https://tex.z-dn.net/?f=2x-3y%3D5%5C%5C5x%3D4y%3D14%5C%5C%5C%5C%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2%26-3%5C%5C5%26-4%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%5C%5Cy%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D5%5C%5C14%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Let A = ![\\\left[\begin{array}{cc}2&-3\\5&-4\\\end{array}\right]](https://tex.z-dn.net/?f=%5C%5C%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2%26-3%5C%5C5%26-4%5C%5C%5Cend%7Barray%7D%5Cright%5D)
The inverse of A multiplied by A = the identity matrix ![\left[\begin{array}{cc}1&0\\0&1\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%260%5C%5C0%261%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Inverse of A =
![\left[\begin{array}{ccc}-4&3\\-5&2\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-4%263%5C%5C-5%262%5C%5C%5Cend%7Barray%7D%5Cright%5D)
detA = ad - bc = 
Inverse of A = ![\left[\begin{array}{cc}\frac{-4}{7} &\frac{3}{7} \\\frac{-5}{7} &\frac{2}{7}\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Cfrac%7B-4%7D%7B7%7D%20%26%5Cfrac%7B3%7D%7B7%7D%20%5C%5C%5Cfrac%7B-5%7D%7B7%7D%20%26%5Cfrac%7B2%7D%7B7%7D%5C%5C%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{ccc}x\\y\\\end{array}\right] = \left[\begin{array}{cc}\frac{-4}{7} &\frac{3}{7} \\\frac{-5}{7} &\frac{2}{7}\\\end{array}\right] \left[\begin{array}{ccc}5\\14\\\end{array}\right] = \left[\begin{array}{ccc}\frac{22}{7} \\\frac{3}{7} \\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Cfrac%7B-4%7D%7B7%7D%20%26%5Cfrac%7B3%7D%7B7%7D%20%5C%5C%5Cfrac%7B-5%7D%7B7%7D%20%26%5Cfrac%7B2%7D%7B7%7D%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D5%5C%5C14%5C%5C%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7B22%7D%7B7%7D%20%5C%5C%5Cfrac%7B3%7D%7B7%7D%20%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Answer:
Width
Step-by-step explanation:
When we have quantitative data it is grouped in classes. There are three ways in which the data can be grouped they are:
Single value grouping where each class has one distinct value.
In Cutpoint grouping is used when the observations have decimal points
In Limit grouping a classes are set based on a specified range of values. Here limit grouping is being done and the range of each class is called width.