Answer:
Resistance = 252.53 Ohms
Explanation:
Given the following data;
Charge = 0.125 C
Voltage = 5 V
Time = 6.3 seconds
To find the resistance;
First of all, we would determine the current flowing through the battery;
Quantity of charge, Q = current * time
0.125 = current * 6.3
Current = 0.125/6.3
Current = 0.0198 A
Next, we find the resistance;
Resistance = voltage/current
Resistance = 5/0.0198
Resistance = 252.53 Ohms
Answer:
Cannot be determined from the given information
Explanation:
Given the following data;
Velocity = 24 m/s
Period = 3 seconds
To find the amplitude of the wave;
Mathematically, the amplitude of a wave is given by the formula;
x = Asin(ωt + ϕ)
Where;
x is displacement of the wave measured in meters.
A is the amplitude.
ω is the angular frequency measured in rad/s.
t is the time period measured in seconds.
ϕ is the phase angle.
Hence, the information provided in this exercise isn't sufficient to find the amplitude of the waveform.
However, the given parameters can be used to calculate the frequency and wavelength of the wave.
Energy of a wave:
E = nhc/λ
3000 = (n x 6.63 x 10⁻³⁴ x 3 x 10⁸)/(510 x 10⁻⁹)
n = 7.69 x 10 ²¹ photons per second per meter²
2.70 cm² = 2.70/10,000 m²
= 2.7 x 10⁻⁴
Photons per second = 7.69 x 10 ²¹ x 2.7 x 10⁻⁴
= 2.08 x 10¹⁸ photons per second
Answer:
F = 3600 [N]
Explanation:
To solve this problem we must use Newton's second law, which tells us that the sum of force must be equal to the product of mass by acceleration.
ΣF = m*a
where:
F = force [N]
m = mass = 2000 [kg]
a = acceleration = 1.8 [m/s^2]
Now replacing:
F = 2000*1.8
F = 3600 [N]