1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kazeer [188]
3 years ago
13

Tamsen is interested in history, and read that because of its regular period, the pendulum constituted the basis of the most acc

urate clocks for nearly 300 years. Christian Huygens (1629-1695), the greatest clockmaker in history, suggested that an international unit of length could be defined as the length of a simple pendulum having a period of exactly 1 s.
Vera and Tamsen discuss how much shorter the SI unit of length, the meter, would have had to be had Huygens' suggestion been followed.
Which of their conclusions is correct?

a) 0.025 m b) 0.752 m c) 0.248 m d) 1.56 m
Physics
1 answer:
geniusboy [140]3 years ago
3 0

We will apply the concept of period in a pendulum, defined as the product between 2\pi by the square root of the length over gravity, this is mathematically

T = 2\pi \sqrt{\frac{L}{g}}

Here,

T = Period

L = Length

g = Acceleration due to gravity

For the period to be 1 second, then we must look for the necessary length for such a requirement so

1 = 2\pi \sqrt{\frac{L}{9.8}}

(\frac{1}{2\pi})^2 = \frac{L}{9.8}

L = 9.8(\frac{1}{2\pi})^2

L = 0.2482m

The meter's length would be slight less than one-fourth of its current length. Also, the number of significant digits depends only on how precisely we know g, because the time has been defined to be exactly 1s.

Therefore the correct answer is C.

You might be interested in
What is the SI unit for speed?
Maksim231197 [3]
That is meters per second, same as velocity.
3 0
3 years ago
Read 2 more answers
In which of these examples is the greatest movement occurring?
vlada-n [284]
You need to provide a picture or tell us the examples... we can’t see what you see
7 0
3 years ago
Read 2 more answers
The force on the spring is F0 and it stores elastic potential energy PEs0. If the spring displacement is tripled to 3x0, determi
Dimas [21]

Answer:

Explanation:

Let initial extension in the spring= x₀

Force on the spring = F₀

Let spring constant = k

Fo = k x₀

Fn = 3k x₀

Fn /Fo = 3

PEs0 ( ORIGINAL)  =1/2 k x₀²

PEsn ( NEW)  =1/2 k (3x₀)²

PEsn / PEs0 = 9

7 0
2 years ago
Stars of spectral type A and F are considered ________.
LekaFEV [45]

Answer:

<u>B. the stars of spectral type A and F are considered reasonably to have habitable planets but much less likely to have planets with complex plant - or animal - like life.</u>

Explanation:

The appropriate spectral range for habitable stars is considered to be "late F" or "G", to "mid-K" or even late "A". <em>This corresponds to temperatures of a little more than 7,000 K down to a little less than 4,000 K</em> (6,700 °C to 3,700 °C); the Sun, a G2 star at 5,777 K, is well within these bounds. "Middle-class" stars (late A, late F, G , mid K )of this sort have a number of characteristics considered important to planetary habitability:

• They live at least a few billion years, allowing life a chance to evolve. <em>More luminous main-sequence stars of the "O", "B", and "A" classes usually live less than a billion years and in exceptional cases less than 10 million.</em>

• They emit enough high-frequency ultraviolet radiation to trigger important atmospheric dynamics such as ozone formation, but not so much that ionisation destroys incipient life.

• They emit sufficient radiation at wavelengths conducive to photosynthesis.

• Liquid water may exist on the surface of planets orbiting them at a distance that does not induce tidal locking.

<u><em>Thus , the stars of spectral type A and F are considered reasonably to have habitable planets but much less likely to have planets with complex plant - or animak - like life.</em></u>

4 0
3 years ago
A pendulum consists of a large balanced mass hanging on the end of a long wire. At the point where a 28-kg pendulum has the grea
Ray Of Light [21]

Answer:

The length of the wire is approximately 67.1 m

Explanation:

The parameters of the pendulum are;

The mass of the pendulum, m = 28 kg

The angle between the pendulum weight and the wire, θ = 89°

The magnitude of the torque exerted by the pendulum's weight, τ = 1.84 × 10⁴ N·m

We have;

Torque, τ = F·L·sinθ = m·g·l·sinθ

Where;

F = The applies force = The weight of the pendulum = m·g

g = The acceleration due to gravity ≈ 9.8 m/s²

l = The length of the wire

Plugging in the values of the variables gives;

1.84 × 10⁴ N·m = 28 kg × 9.8 m/s² × l × sin(89°)

Therefore;

l = 1.84 × 10⁴ N·m/(28 kg × 9.8 m/s² ×  sin(89°)) = 67.0656080029 m ≈ 67.1 m

The length of the wire, l ≈ 67.1 m

6 0
3 years ago
Other questions:
  • Why doesn't cloud formation take place until the dew point temperature is reached
    10·1 answer
  • In space, astronauts don’t have gravity to keep them in place. That makes doing even simple tasks difficult. Gene Cernan was the
    13·1 answer
  • A fixed amount of gas at 25.0°c occupies a volume of 10.0 l when the pressure is 667 torr. use boyle's law to calculate the pres
    15·1 answer
  • All of the visible color light waves together make up
    11·1 answer
  • Suppose a ray of light traveling in a material with an index of refraction na reaches an interface with a material having an ind
    7·1 answer
  • Which force causes a soccer ball to take a curved path when it is kicked?
    9·1 answer
  • PLEASE HELP!! I'll mark brainliest for correct answer.
    13·1 answer
  • The Valence electrons determine an atom's ?
    10·1 answer
  • A box collides with a ball as shown in the diagram below. After the collision, what
    11·1 answer
  • Which of these statements is true about severe weather?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!