Answer:
Explanation:
Given
Pressure, Temperature, Volume of gases is

Let P & T be the final Pressure and Temperature
as it is rigid adiabatic container therefore Q=0 as heat loss by one gas is equal to heat gain by another gas


where Q=heat loss or gain (- heat loss,+heat gain)
W=work done by gas
change in internal Energy of gas
Thus from 1 & 2 we can say that




where 



and 
The return flow goes to the right and instead of sea breeze, there's land breeze.
There all diffrent speeds
Answer:
F₂= 210 pounds
Explanation:
Conceptual analysis
Hooke's law
Hooke's law establishes that the elongation (x) of a spring is directly proportional to the magnitude of force (F) applied to it, provided that said spring is not permanently deformed:
F= K*x Formula (1)
Where;
F is the magnitude of the force applied to the spring in Newtons (Pounds)
K is the elastic spring constant, which relates force and elongation. The higher its value, the more work it will cost to stretch the spring. (Pounds/inch)
x the elongation of the spring (inch)
Data
The data given is incorrect because if we apply them the answer would be illogical.
The correct data are as follows:
F₁ =80 pounds
x₁= 8 inches
x₂= 21 inches
Problem development
We replace data in formula 1 to calculate K :
F₁= K*x₁
K=( F₁) / (x₁)
K=( 80) / (8) = 10 pounds/ inche
We apply The formula 1 to calculate F₂
F₂= K*x₂
F₂= (10)*(21)
F₂= 210 pounds
Hello!

Use the equation F = m · a (Newton's Second Law) to solve. Substitute in the given values:
F = 5 · 20
F = 100N