1) In a circular motion, the angular displacement

is given by

where S is the arc length and r is the radius. The problem says that the truck drove for 2600 m, so this corresponds to the total arc length covered by the tire:

. Using the information about the radius,

, we find the total angular displacement:

2) If we put larger tires, with radius

, the angular displacement will be smaller. We can see this by using the same formula. In fact, this time we have:
Answer:
v = 0.41 m/s
Explanation:
- In this case, the change in the mechanical energy, is equal to the work done by the fricition force on the block.
- At any point, the total mechanical energy is the sum of the kinetic energy plus the elastic potential energy.
- So, we can write the following general equation, taking the initial and final values of the energies:

- Since the block and spring start at rest, the change in the kinetic energy is just the final kinetic energy value, Kf.
- ⇒ Kf = 1/2*m*vf² (2)
- The change in the potential energy, can be written as follows:

where k = force constant = 815 N/m
xf = final displacement of the block = 0.01 m (taking as x=0 the position
for the spring at equilibrium)
x₀ = initial displacement of the block = 0.03 m
- Regarding the work done by the force of friction, it can be written as follows:

where μk = coefficient of kinettic friction, Fn = normal force, and Δx =
horizontal displacement.
- Since the surface is horizontal, and no acceleration is present in the vertical direction, the normal force must be equal and opposite to the force due to gravity, Fg:
- Fn = Fg= m*g (5)
- Replacing (5) in (4), and (3) and (4) in (1), and rearranging, we get:


- Replacing by the values of m, k, g, xf and x₀, in (7) and solving for v, we finally get:

Answer:
Vacuum. A sound vacuum was created, i believe.
Answer:
Rs = 0.02008 Ω = 20.08 mΩ
Explanation:
The range of an ammeter can be increased by connecting a small shunt resistance to it in a series combination. This shunt resistance can be calculated by the following formula:

where,
= value of shunt resistance = ?
= current range of ammeter = 20 mA = 0.02 A
I = Required range of ammeter = 5 A
= Resistance of ammeter = 5 ohms
Therefore,

<u>Rs = 0.02008 Ω = 20.08 mΩ</u>
The formula for the money multiplier is :
1/ Reserve rate
so, the answer would be :
1/0.07