Answer:
η = 0.882 = 88.2 %
Explanation:
The efficiency of the pulley system can be given as follows:

where,
η = efficiency of pulley system = ?
W_out = Output Work = (600 N)(0.6 m) = 360 J
W_in = Input Work = (35.7 N)(11.43 m) = 408.051 J
Therefore,

<u>η = 0.882 = 88.2 %</u>
Answer:
v = 50.5 m/s
Explanation:
F = (m)(^v/^t)
115N = (0.04551kg)(v/(0.020s))
2,526.917161 m/s² = v/(0.020s)
v = 50.53834322 m/s
v = 50.5 m/s
Answer:
The liquid phase will have the lowest temperature change upon heating.
Explanation:
Assuming no phase change due to heating, we know that the temperature change, is proportional to the mass heated, being the proportionality constant a quantity that depends on the material, and represents the resistance of the material to change the temperature, called specific heat.
So, if we assume that the mass is the same for the three phases, and that the amount of heat supplied is also the same,the phase with the highest specific heat will have the lowest temperature change.
So, the liquid phase will be the one that exhibits this behavior, as the specific heat of liquid water (4.184 J/gºC) is the highest among the three phases.
The net force does not depend on the mass.
We have 12N to the right, and 19N to the left.
The net force is (19.0-12.0)N=7.0N to the left.
Explanation:
a. The net force is the upward force of the chute minus the weight of the crate.
∑F = F − mg
∑F = 150 N − (11 kg) (9.8 m/s²)
∑F = 42.2 N
b. From Newton's second law, the net force equals the mass times acceleration:
∑F = ma
42.2 N = (11 kg) a
a = 3.84 m/s²
c. Acceleration is the change in velocity over change in time. Assuming the crate is released from rest:
v = at + v₀
v = (3.84 m/s²) (5 s) + (0 m/s)
v = 19.2 m/s