<span>4FeS2 + 11O2 = 2Fe2O3 + 8SO2</span>
Percent yield is calculated as the actual yield divided by the theoretical yield multiplied by 100.
Actual yield = 55 g ( 1 mol / 159.69 g ) = 0.34 mol Fe2O3
To find for the theoretical yield, we first determine the limiting reactant.
100 g O2 ( 1 mol / 32 g) = 3.13 mol O2
200 g FeS2 (1 mol / 119.98g) = 1.67 mol FeS2
Therefore, the limiting reactant is O2.
Theoretical yield = 3.13 mol O2 ( 2 mol Fe2O3 / 11 mol O2 ) = 0.57 mol Fe2O3
Percent yield = (0.34 mol / 0.57 mol) x 100 = 59.74%
mole=10 x 10⁻³ : 46 g/mol = 2.17 x 10⁻⁴
Answer: Enthalpy of combustion (per mole) of
is -2657.5 kJ
Explanation:
The chemical equation for the combustion of butane follows:

The equation for the enthalpy change of the above reaction is:
![\Delta H^o_{rxn}=[(8\times \Delta H^o_f_{CO_2(g)})+(10\times \Delta H^o_f_{H_2O(g)})]-[(1\times \Delta H^o_f_{C_4H_{10}(g)})+(4\times \Delta H^o_f_{O_2(g)})]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%288%5Ctimes%20%5CDelta%20H%5Eo_f_%7BCO_2%28g%29%7D%29%2B%2810%5Ctimes%20%5CDelta%20H%5Eo_f_%7BH_2O%28g%29%7D%29%5D-%5B%281%5Ctimes%20%5CDelta%20H%5Eo_f_%7BC_4H_%7B10%7D%28g%29%7D%29%2B%284%5Ctimes%20%5CDelta%20H%5Eo_f_%7BO_2%28g%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![\Delta H^o_{rxn}=[(8\times -393.5)+(10\times -241.82)]-[(2\times -125.6)+(4\times 0)]\\\\\Delta H^o_{rxn}=-5315kJ](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%288%5Ctimes%20-393.5%29%2B%2810%5Ctimes%20-241.82%29%5D-%5B%282%5Ctimes%20-125.6%29%2B%284%5Ctimes%200%29%5D%5C%5C%5C%5C%5CDelta%20H%5Eo_%7Brxn%7D%3D-5315kJ)
Enthalpy of combustion (per mole) of
is -2657.5 kJ
Explanation:
It is given that,
The time period of artificial satellite in a circular orbit of radius R is T. The relation between the time period and the radius is given by :

The radius of the orbit in which time period is 8T is R'. So, the relation is given by :



So, the radius of the orbit in which time period is 8T is 4R. Hence, this is the required solution.